Androgen_recep
crystal structure of the human androgen receptor ligand binding domain bound with an androgen receptor nh2-terminal peptide, ar20-30, and r1881
Identifiers
SymbolAndrogen_recep
PfamPF02166
InterProIPR001103
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Normal function of the androgen receptor. Testosterone (T) enters the cell and, if 5-alpha-reductase is present, is converted into dihydrotestone (DHT). Upon steroid binding, the androgen receptor (AR) undergoes a conformational change and releases heat-shock proteins (hsps). Phosphorylation (P) occurs before or after steroid binding. The AR translocates to the nucleus where dimerization, DNA binding, and the recruitment of coactivators occur. Target genes are transcribed (mRNA) and translated into proteins.[1][2][3][4]

Androgen are Steroid hormone with important roles in male and disease.

The androgen receptor (AR), also known as NR3C4 (nuclear receptor subfamily 3, group C, member 4), is a type of nuclear receptor[5] that is activated by binding of either of the androgenic hormones testosterone or dihydrotestosterone [6] in the cytoplasm and then translocating into the nucleus. The androgen receptor is most closely related to the progesterone receptor, and progestins in higher dosages can block the androgen receptor.[7][8]

The main function of the androgen receptor is as a DNA-binding transcription factor that regulates gene expression;[9] however, the androgen receptor has other functions as well.[10] Androgen regulated genes are critical for the development and maintenance of the male sexual phenotype.

Function edit

Effect on development edit

In some cell types, testosterone interacts directly with androgen receptors, whereas, in others, testosterone is converted by 5-alpha-reductase to dihydrotestosterone, an even more potent agonist for androgen receptor activation.[11] Testosterone appears to be the primary androgen receptor-activating hormone in the Wolffian duct, whereas dihydrotestosterone is the main androgenic hormone in the urogenital sinus, urogenital tubercle, and hair follicles.[12] Hence, testosterone is responsible primarily for the development of male primary sexual characteristics, whereas dihydrotestosterone is responsible for secondary male characteristics.

Androgens cause slow epiphysis, or maturation of the bones, but more of the potent epiphysis effect comes from the estrogen produced by aromatization of androgens. Steroid users of teen age may find that their growth had been stunted by androgen and/or estrogen excess. People with too little sex hormones can be short during puberty but end up taller as adults as in androgen insensitivity syndrome or estrogen insensitivity syndrome.[13]

Also, AR knockout-mice studies have shown that AR is essential for normal female fertility, being required for development and full functionality of the ovarian follicles and ovulation, working through both intra-ovarian and neuroendocrine mechanisms.[14]

Maintenance of male skeletal integrity edit

Via the Androgen receptor, androgens play a key role in the maintenance of male skeletal integrity. The regulation of this integrity by androgen receptor (AR) signaling can be attributed to both osteoblasts and osteocytes. [15]

Mechanism of action edit

Genomic edit

The primary mechanism of action for androgen receptors is direct regulation of gene transcription. The binding of an androgen to the androgen receptor results in a conformational change in the receptor that, in turn, causes dissociation of heat shock proteins, transport from the cytosol into the cell nucleus, and dimerization. The androgen receptor dimer binds to a specific sequence of DNA known as a hormone response element. Androgen receptors interact with other proteins in the nucleus, resulting in up- or down-regulation of specific gene transcription.[16] Up-regulation or activation of transcription results in increased synthesis of messenger RNA, which, in turn, is translated by ribosomes to produce specific proteins. One of the known target genes of androgen receptor activation is the insulin-like growth factor I receptor (IGF-1R).[17] Thus, changes in levels of specific proteins in cells is one way that androgen receptors control cell behavior.

One function of androgen receptor that is independent of direct binding to its target DNA sequence, is facilitated by recruitment via other DNA-binding proteins. One example is serum response factor, a protein that activates several genes that cause muscle growth.[18]

Androgen receptor is modified by acetylation, which directly promotes contact independent growth of prostate cancer cells.[19]

Non-genomic edit

More recently, androgen receptors have been shown to have a second mode of action. As has been also found for other steroid hormone receptors such as estrogen receptors, androgen receptors can have actions that are independent of their interactions with DNA.[10][20] Androgen receptors interact with certain signal transduction proteins in the cytoplasm. Androgen binding to cytoplasmic androgen receptors can cause rapid changes in cell function independent of changes in gene transcription, such as changes in ion transport. Regulation of signal transduction pathways by cytoplasmic androgen receptors can indirectly lead to changes in gene transcription, for example, by leading to phosphorylation of other transcription factors.

Genetics edit

Gene edit

In humans, the androgen receptor is encoded by the AR gene located on the X chromosome at Xq11-12.[21][22]

AR deficiencies edit

The androgen insensitivity syndrome, formerly known as testicular feminization, is caused by a mutation of the androgen receptor gene located on the X chromosome (locus:Xq11-Xq12).[23] The androgen receptor seems to affect neuron physiology and is defective in Kennedy's disease.[24][25] In addition, point mutations and trinucleotide repeat polymorphisms has been linked to a number of additional disorders.[26]

Structure edit

 
Structural domains of the two isoforms (AR-A and AR-B) of the human androgen receptor. Numbers above the bars refer to the amino acid residues that separate the domains starting from the N-terminus (left) to C-terminus (right). NTD = N-terminal domain, DBD = DNA binding domain. LBD = ligand binding domain. AF = activation function.

Isoforms edit

Two isoforms of the androgen receptor (A and B) have been identified:[27]

  • AR-A - 87 kDa - N-terminus truncated (lacks the first 187 amino acids), which results from in vitro proteolysis.[28]
  • AR-B - 110 kDa - full length

Domains edit

Like other nuclear receptors, the androgen receptor is modular in structure and is composed of the following functional domains labeled A through F:[29]

  • A/B) - N-terminal regulatory domain contains:[30]
    • activation function 1 (AF-1) between residues 101 and 370 required for full ligand activated transcriptional activity
    • activation function 5 (AF-5) between residues 360-485 is responsible for the constitutive activity (activity without bound ligand)
    • dimerization surface involving residues 1-36 (containing the FXXLF motif where F = phenylalanine, L = leucine, and X = any amino acid residue) and 370-494, both of which interact with the LBD in an intramolecular[31][32][33] head-to-tail interaction[34][35][36]
  • C) - DNA binding domain (DBD)
  • D) - Hinge region - flexible region that connects the DBD with the LBD; along with the DBD, contains a ligand dependent nuclear localization signal[37]
  • E) - Ligand binding domain (LBD) containing
    • activation function 2 (AF-2), responsible for agonist induced activity (activity in the presence of bound agonist)
    • AF-2 binds either the N-terminal FXXFL motif intramolecularly or coactivator proteins (containing the LXXLL or preferably FXXFL motifs)[36]
    • A ligand dependent nuclear export signal[38]
  • F) - C-terminal domain

Interactions edit

Androgen receptor has been shown to interact with:

See also edit

References edit

  1. ^ Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS (June 1995). "Androgen receptor defects: historical, clinical, and molecular perspectives". Endocr. Rev. 16 (3): 271–321. doi:10.1210/edrv-16-3-271. PMID 7671849.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ Gottlieb B, Lombroso R, Beitel LK, Trifiro MA (January 2005). "Molecular pathology of the androgen receptor in male (in)fertility". Reprod. Biomed. Online. 10 (1): 42–8. doi:10.1016/S1472-6483(10)60802-4. PMID 15705293.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ Choong CS, Wilson EM (December 1998). "Trinucleotide repeats in the human androgen receptor: a molecular basis for disease". J. Mol. Endocrinol. 21 (3): 235–57. doi:10.1677/jme.0.0210235. PMID 9845666.
  4. ^ Meehan KL, Sadar MD (May 2003). "Androgens and androgen receptor in prostate and ovarian malignancies". Front. Biosci. 8 (4): d780–800. doi:10.2741/1063. PMID 12700055.
  5. ^ Lu NZ, Wardell SE, Burnstein KL, Defranco D, Fuller PJ, Giguere V, Hochberg RB, McKay L, Renoir JM, Weigel NL, Wilson EM, McDonnell DP, Cidlowski JA (December 2006). "International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors". Pharmacol. Rev. 58 (4): 782–97. doi:10.1124/pr.58.4.9. PMID 17132855. S2CID 28626145.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Roy AK, Lavrovsky Y, Song CS, Chen S, Jung MH, Velu NK, Bi BY, Chatterjee B (1999). "Regulation of androgen action". Vitam. Horm. Vitamins & Hormones. 55: 309–52. doi:10.1016/S0083-6729(08)60938-3. ISBN 978-0-12-709855-5. PMID 9949684.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ Bardin CW, Brown T, Isomaa VV, Jänne OA (1983). "Progestins can mimic, inhibit and potentiate the actions of androgens". Pharmacol. Ther. 23 (3): 443–59. doi:10.1016/0163-7258(83)90023-2. PMID 6371845.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Raudrant D, Rabe T (2003). "Progestogens with antiandrogenic properties". Drugs. 63 (5): 463–92. doi:10.2165/00003495-200363050-00003. PMID 12600226. S2CID 28436828.
  9. ^ Mooradian AD, Morley JE, Korenman SG (1987). "Biological actions of androgens". Endocr. Rev. 8 (1): 1–28. doi:10.1210/edrv-8-1-1. PMID 3549275.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ a b Heinlein CA, Chang C (2002). "The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions". Mol. Endocrinol. 16 (10): 2181–7. doi:10.1210/me.2002-0070. PMID 12351684.
  11. ^ Davison SL, Bell R (April 2006). "Androgen physiology". Semin. Reprod. Med. 24 (2): 71–7. doi:10.1055/s-2006-939565. PMID 16633980.
  12. ^ Sinisi AA, Pasquali D, Notaro A, Bellastella A (2003). "Sexual differentiation". J. Endocrinol. Invest. 26 (3 Suppl): 23–8. PMID 12834017.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ Frank GR (September 2003). "Role of estrogen and androgen in pubertal skeletal physiology". Med. Pediatr. Oncol. 41 (3): 217–21. doi:10.1002/mpo.10340. PMID 12868122.
  14. ^ Walters KA, Simanainen U, Handelsman DJ (March 2010). "Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models". Hum Reprod Update. 16 (5): 543–58. doi:10.1093/humupd/dmq003. PMID 20231167.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ Sinnesael M., Claessens F., Laurent M., Dubois V., Boonen S., Deboel L., Vanderschueren D. (Dec 2012). "Androgen receptor (AR) in osteocytes is important for the maintenance of male skeletal integrity: evidence from targeted AR disruption in mouse osteocytes". Journal of Bone and Mineral Research. 27 (12): 2535–43. doi:10.1002/jbmr.1713. PMID 22836391. S2CID 34997863.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ Heemers HV, Tindall DJ (December 2007). "Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex". Endocr. Rev. 28 (7): 778–808. doi:10.1210/er.2007-0019. PMID 17940184.
  17. ^ Pandini G, Mineo R, Frasca F, Roberts CT Jr, Marcelli M, Vigneri R, Belfiore A (March 2005). "Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells". Cancer Res. 65 (5): 1849–57. doi:10.1158/0008-5472.CAN-04-1837. PMID 15753383.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. ^ Vlahopoulos S, Zimmer WE, Jenster G, Belaguli NS, Balk SP, Brinkmann AO, Lanz RB, Zoumpourlis VC, Schwartz RJ (2005). "Recruitment of the androgen receptor via serum response factor facilitates expression of a myogenic gene". J. Biol. Chem. 280 (9): 7786–92. doi:10.1074/jbc.M413992200. PMID 15623502.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. ^ a b Fu M, Wang C, Reutens AT, Wang J, Angeletti RH, Siconolfi-Baez L, Ogryzko V, Avantaggiati ML, Pestell RG (July 2000). "p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation". J. Biol. Chem. 275 (27): 20853–60. doi:10.1074/jbc.M000660200. PMID 10779504.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. ^ Fix C, Jordan C, Cano P, Walker WH (2004). "Testosterone activates mitogen-activated protein kinase and the cAMP response element binding protein transcription factor in Sertoli cells". Proc Natl Acad Sci USA. 101 (30): 10919–24. doi:10.1073/pnas.0404278101. PMC 503720. PMID 15263086.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ Chang CS, Kokontis J, Liao ST (1988). "Molecular cloning of human and rat complementary DNA encoding androgen receptors". Science. 240 (4850): 324–6. doi:10.1126/science.3353726. PMID 3353726.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. ^ Trapman J, Klaassen P, Kuiper GG, van der Korput JA, Faber PW, van Rooij HC, Geurts van Kessel A, Voorhorst MM, Mulder E, Brinkmann AO (1988). "Cloning, structure and expression of a cDNA encoding the human androgen receptor". Biochem. Biophys. Res. Commun. 153 (1): 241–8. doi:10.1016/S0006-291X(88)81214-2. PMID 3377788.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. ^ Brown TR (1995). "Human androgen insensitivity syndrome" (abstract). J. Androl. 16 (4): 299–303. PMID 8537246.
  24. ^ Kennedy WR, Alter M, Sung JH (1968). "Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait". Neurology. 18 (7): 671–80. doi:10.1212/WNL.18.7.671. PMID 4233749. S2CID 45735233.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. ^ Yu Z, Dadgar N, Albertelli M, Gruis K, Jordan C, Robins DM, Lieberman AP (2006). "Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model". J. Clin. Invest. 116 (10): 2663–72. doi:10.1172/JCI28773. PMC 1564432. PMID 16981011.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. ^ Rajender S, Singh L, Thangaraj K (2007). "Phenotypic heterogeneity of mutations in androgen receptor gene". Asian J. Androl. 9 (2): 147–79. doi:10.1111/j.1745-7262.2007.00250.x. PMID 17334586.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. ^ Wilson CM, McPhaul MJ (1994). "A and B forms of the androgen receptor are present in human genital skin fibroblasts". Proc. Natl. Acad. Sci. U.S.A. 91 (4): 1234–8. doi:10.1073/pnas.91.4.1234. PMC 43131. PMID 8108393.
  28. ^ Gregory CW, He B, Wilson EM. (2001). "The putative androgen receptor-A form results from in vitro proteolysis". J Mol Endocrinol. 27 (3): 309–19. doi:10.1677/jme.0.0270309. PMID 11719283. S2CID 13645228.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. ^ Brinkmann AO, Klaasen P, Kuiper GG, van der Korput JA, Bolt J, de Boer W, Smit A, Faber PW, van Rooij HC, Geurts van Kessel A, Voorhorst MM, Mulder E, Trapman J (1989). "Structure and function of the androgen receptor". Urol. Res. 17 (2): 87–93. doi:10.1007/BF00262026. PMID 2734982. S2CID 19706366.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. ^ Jenster G, van der Korput HA, Trapman J, Brinkmann AO (1995). "Identification of two transcription activation units in the N-terminal domain of the human androgen receptor". J. Biol. Chem. 270 (13): 7341–6. doi:10.1074/jbc.270.13.7341. PMID 7706276.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. ^ Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS, Ma AA, Miner JN, Diamond MI (July 2005). "The structural basis of androgen receptor activation: Intramolecular and intermolecular amino–carboxy interactions". Proc. Natl. Acad. Sci. U.S.A. 102 (28): 9802–7. doi:10.1073/pnas.0408819102. PMC 1168953. PMID 15994236.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. ^ Klokk TI, Kurys P, Elbi C, Nagaich AK, Hendarwanto A, Slagsvold T, Chang CY, Hager GL, Saatcioglu F (March 2007). "Ligand-Specific Dynamics of the Androgen Receptor at Its Response Element in Living Cells". Mol. Cell. Biol. 27 (5): 1823–43. doi:10.1128/MCB.01297-06. PMC 1820481. PMID 17189428.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^ van Royen ME, Cunha SM, Brink MC, Mattern KA, Nigg AL, Dubbink HJ, Verschure PJ, Trapman J, Houtsmuller AB (April 2007). "Compartmentalization of androgen receptor protein–protein interactions in living cells". J. Cell Biol. 177 (1): 63–72. doi:10.1083/jcb.200609178. PMC 2064112. PMID 17420290.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. ^ Langley E, Zhou ZX, Wilson EM (1995). "Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer". J. Biol. Chem. 270 (50): 29983–90. doi:10.1074/jbc.270.50.29983. PMID 8530400.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. ^ Berrevoets CA, Doesburg P, Steketee K, Trapman J, Brinkmann AO (1998). "Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2)". Mol. Endocrinol. 12 (8): 1172–83. doi:10.1210/me.12.8.1172. PMID 9717843.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  36. ^ a b Dubbink HJ, Hersmus R, Verma CS, van der Korput HA, Berrevoets CA, van Tol J, Ziel-van der Made AC, Brinkmann AO, Pike AC, Trapman J (2004). "Distinct recognition modes of FXXLF and LXXLL motifs by the androgen receptor". Mol. Endocrinol. 18 (9): 2132–50. doi:10.1210/me.2003-0375. PMID 15178743.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  37. ^ Kaku N, Matsuda KI, Tsujimura A, Kawata M (April 2008). "Characterization of Nuclear Import of the Domain-Specific Androgen Receptor in Association with the Importin α/β and Ran-Guanosine 5′-Triphosphate Systems". Endocrinology. 149 (8): 3960–9. doi:10.1210/en.2008-0137. PMC 2488236. PMID 18420738.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ Saporita AJ, Zhang Q, Navai N, Dincer Z, Hahn J, Cai X, Wang Z (October 2003). "Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor". J. Biol. Chem. 278 (43): 41998–2005. doi:10.1074/jbc.M302460200. PMID 12923188.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  39. ^ a b Lin HK, Yeh S, Kang HY, Chang C (June 2001). "Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor". Proc. Natl. Acad. Sci. U.S.A. 98 (13): 7200–5. doi:10.1073/pnas.121173298. PMC 34646. PMID 11404460.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. ^ Shatkina L, Mink S, Rogatsch H, Klocker H, Langer G, Nestl A, Cato AC (October 2003). "The Cochaperone Bag-1L Enhances Androgen Receptor Action via Interaction with the NH2-Terminal Region of the Receptor". Mol. Cell. Biol. 23 (20): 7189–97. doi:10.1128/MCB.23.20.7189-7197.2003. PMC 230325. PMID 14517289.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  41. ^ Knee DA, Froesch BA, Nuber U, Takayama S, Reed JC (April 2001). "Structure-function analysis of Bag1 proteins. Effects on androgen receptor transcriptional activity". J. Biol. Chem. 276 (16): 12718–24. doi:10.1074/jbc.M010841200. PMID 11278763.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  42. ^ Froesch BA, Takayama S, Reed JC (May 1998). "BAG-1L protein enhances androgen receptor function". J. Biol. Chem. 273 (19): 11660–6. doi:10.1074/jbc.273.19.11660. PMID 9565586.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  43. ^ a b c d Song LN, Coghlan M, Gelmann EP (January 2004). "Antiandrogen effects of mifepristone on coactivator and corepressor interactions with the androgen receptor". Mol. Endocrinol. 18 (1): 70–85. doi:10.1210/me.2003-0189. PMID 14593076.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  44. ^ a b c Masiello D, Chen SY, Xu Y, Verhoeven MC, Choi E, Hollenberg AN, Balk SP (October 2004). "Recruitment of beta-catenin by wild-type or mutant androgen receptors correlates with ligand-stimulated growth of prostate cancer cells". Mol. Endocrinol. 18 (10): 2388–401. doi:10.1210/me.2003-0436. PMID 15256534.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  45. ^ Yang F, Li X, Sharma M, Sasaki CY, Longo DL, Lim B, Sun Z (March 2002). "Linking beta-catenin to androgen-signaling pathway". J. Biol. Chem. 277 (13): 11336–44. doi:10.1074/jbc.M111962200. PMID 11792709.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  46. ^ Amir AL, Barua M, McKnight NC, Cheng S, Yuan X, Balk SP (August 2003). "A direct beta-catenin-independent interaction between androgen receptor and T cell factor 4". J. Biol. Chem. 278 (33): 30828–34. doi:10.1074/jbc.M301208200. PMID 12799378.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  47. ^ Mulholland DJ, Read JT, Rennie PS, Cox ME, Nelson CC (August 2003). "Functional localization and competition between the androgen receptor and T-cell factor for nuclear beta-catenin: a means for inhibition of the Tcf signaling axis". Oncogene. 22 (36): 5602–13. doi:10.1038/sj.onc.1206802. PMID 12944908. S2CID 9301471.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  48. ^ Pawlowski JE, Ertel JR, Allen MP, Xu M, Butler C, Wilson EM, Wierman ME (June 2002). "Liganded androgen receptor interaction with beta-catenin: nuclear co-localization and modulation of transcriptional activity in neuronal cells". J. Biol. Chem. 277 (23): 20702–10. doi:10.1074/jbc.M200545200. PMID 11916967.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  49. ^ Park JJ, Irvine RA, Buchanan G, Koh SS, Park JM, Tilley WD, Stallcup MR, Press MF, Coetzee GA (November 2000). "Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor". Cancer Res. 60 (21): 5946–9. PMID 11085509.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  50. ^ Yeh S, Hu YC, Rahman M, Lin HK, Hsu CL, Ting HJ, Kang HY, Chang C (October 2000). "Increase of androgen-induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells". Proc. Natl. Acad. Sci. U.S.A. 97 (21): 11256–61. doi:10.1073/pnas.190353897. PMC 17187. PMID 11016951.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  51. ^ Sato N, Sadar MD, Bruchovsky N, Saatcioglu F, Rennie PS, Sato S, Lange PH, Gleave ME (July 1997). "Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP". J. Biol. Chem. 272 (28): 17485–94. doi:10.1074/jbc.272.28.17485. PMID 9211894.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  52. ^ Cifuentes E, Mataraza JM, Yoshida BA, Menon M, Sacks DB, Barrack ER, Reddy GP (January 2004). "Physical and functional interaction of androgen receptor with calmodulin in prostate cancer cells". Proc. Natl. Acad. Sci. U.S.A. 101 (2): 464–9. doi:10.1073/pnas.0307161101. PMC 327170. PMID 14695896.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  53. ^ Lu ML, Schneider MC, Zheng Y, Zhang X, Richie JP (April 2001). "Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation". J. Biol. Chem. 276 (16): 13442–51. doi:10.1074/jbc.M006598200. PMID 11278309.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  54. ^ Lee DK, Duan HO, Chang C (March 2001). "Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the efficiency of transcriptional elongation". J. Biol. Chem. 276 (13): 9978–84. doi:10.1074/jbc.M002285200. PMID 11266437.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  55. ^ Beauchemin AM, Gottlieb B, Beitel LK, Elhaji YA, Pinsky L, Trifiro MA (2001). "Cytochrome c oxidase subunit Vb interacts with human androgen receptor: a potential mechanism for neurotoxicity in spinobulbar muscular atrophy". Brain Res. Bull. 56 (3–4): 285–97. doi:10.1016/S0361-9230(01)00583-4. PMID 11719263. S2CID 24740136.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  56. ^ Kim J, Jia L, Stallcup MR, Coetzee GA (February 2005). "The role of protein kinase A pathway and cAMP responsive element-binding protein in androgen receptor-mediated transcription at the prostate-specific antigen locus". J. Mol. Endocrinol. 34 (1): 107–18. doi:10.1677/jme.1.01701. PMID 15691881. S2CID 13026843.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  57. ^ Frønsdal K, Engedal N, Slagsvold T, Saatcioglu F (November 1998). "CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1". J. Biol. Chem. 273 (48): 31853–9. doi:10.1074/jbc.273.48.31853. PMID 9822653.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  58. ^ a b c Ishitani K, Yoshida T, Kitagawa H, Ohta H, Nozawa S, Kato S (July 2003). "p54nrb acts as a transcriptional coactivator for activation function 1 of the human androgen receptor". Biochem. Biophys. Res. Commun. 306 (3): 660–5. doi:10.1016/S0006-291X(03)01021-0. PMID 12810069.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  59. ^ Aarnisalo P, Palvimo JJ, Jänne OA (March 1998). "CREB-binding protein in androgen receptor-mediated signaling". Proc. Natl. Acad. Sci. U.S.A. 95 (5): 2122–7. doi:10.1073/pnas.95.5.2122. PMC 19270. PMID 9482849.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  60. ^ Reutens AT, Fu M, Wang C, Albanese C, McPhaul MJ, Sun Z, Balk SP, Jänne OA, Palvimo JJ, Pestell RG (May 2001). "Cyclin D1 binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner". Mol. Endocrinol. 15 (5): 797–811. doi:10.1210/mend.15.5.0641. PMID 11328859.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  61. ^ Petre-Draviam CE, Williams EB, Burd CJ, Gladden A, Moghadam H, Meller J, Diehl JA, Knudsen KE (January 2005). "A central domain of cyclin D1 mediates nuclear receptor corepressor activity". Oncogene. 24 (3): 431–44. doi:10.1038/sj.onc.1208200. PMID 15558026. S2CID 21812009.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  62. ^ Knudsen KE, Cavenee WK, Arden KC (May 1999). "D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability". Cancer Res. 59 (10): 2297–301. PMID 10344732.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  63. ^ Lee DK, Duan HO, Chang C (March 2000). "From androgen receptor to the general transcription factor TFIIH. Identification of cdk activating kinase (CAK) as an androgen receptor NH(2)-terminal associated coactivator". J. Biol. Chem. 275 (13): 9308–13. doi:10.1074/jbc.275.13.9308. PMID 10734072.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  64. ^ Wu K, Katiyar S, Witkiewicz A; et al. (April 2009). "The cell fate determination factor dachshund inhibits androgen receptor signaling and prostate cancer cellular growth". Cancer Res. 69 (8): 3347–55. doi:10.1158/0008-5472.CAN-08-3821. PMC 2669850. PMID 19351840. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  65. ^ Lin DY, Fang HI, Ma AH, Huang YS, Pu YS, Jenster G, Kung HJ, Shih HM (December 2004). "Negative Modulation of Androgen Receptor Transcriptional Activity by Daxx". Mol. Cell. Biol. 24 (24): 10529–41. doi:10.1128/MCB.24.24.10529-10541.2004. PMC 533990. PMID 15572661.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  66. ^ Wafa LA, Cheng H, Rao MA, Nelson CC, Cox M, Hirst M, Sadowski I, Rennie PS (October 2003). "Isolation and identification of L-dopa decarboxylase as a protein that binds to and enhances transcriptional activity of the androgen receptor using the repressed transactivator yeast two-hybrid system". Biochem. J. 375 (Pt 2): 373–83. doi:10.1042/BJ20030689. PMC 1223690. PMID 12864730.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  67. ^ Niki T, Takahashi-Niki K, Taira T, Iguchi-Ariga SM, Ariga H (February 2003). "DJBP: a novel DJ-1-binding protein, negatively regulates the androgen receptor by recruiting histone deacetylase complex, and DJ-1 antagonizes this inhibition by abrogation of this complex". Mol. Cancer Res. 1 (4): 247–61. PMID 12612053.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  68. ^ Bonaccorsi L, Carloni V, Muratori M, Formigli L, Zecchi S, Forti G, Baldi E (October 2004). "EGF receptor (EGFR) signaling promoting invasion is disrupted in androgen-sensitive prostate cancer cells by an interaction between EGFR and androgen receptor (AR)". Int. J. Cancer. 112 (1): 78–86. doi:10.1002/ijc.20362. hdl:2158/395766. PMID 15305378. S2CID 46121331.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  69. ^ Bonaccorsi L, Muratori M, Carloni V, Marchiani S, Formigli L, Forti G, Baldi E (August 2004). "The androgen receptor associates with the epidermal growth factor receptor in androgen-sensitive prostate cancer cells". Steroids. 69 (8–9): 549–52. doi:10.1016/j.steroids.2004.05.011. hdl:2158/395763. PMID 15288768. S2CID 23831527.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  70. ^ Li P, Lee H, Guo S, Unterman TG, Jenster G, Bai W (January 2003). "AKT-Independent Protection of Prostate Cancer Cells from Apoptosis Mediated through Complex Formation between the Androgen Receptor and FKHR". Mol. Cell. Biol. 23 (1): 104–18. doi:10.1128/MCB.23.1.104-118.2003. PMC 140652. PMID 12482965.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  71. ^ Koshy B, Matilla T, Burright EN, Merry DE, Fischbeck KH, Orr HT, Zoghbi HY (September 1996). "Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase". Hum. Mol. Genet. 5 (9): 1311–8. doi:10.1093/hmg/5.9.1311. PMID 8872471.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  72. ^ Nishimura K, Ting HJ, Harada Y, Tokizane T, Nonomura N, Kang HY, Chang HC, Yeh S, Miyamoto H, Shin M, Aozasa K, Okuyama A, Chang C (August 2003). "Modulation of androgen receptor transactivation by gelsolin: a newly identified androgen receptor coregulator". Cancer Res. 63 (16): 4888–94. PMID 12941811.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  73. ^ Rigas AC, Ozanne DM, Neal DE, Robson CN (November 2003). "The scaffolding protein RACK1 interacts with androgen receptor and promotes cross-talk through a protein kinase C signaling pathway". J. Biol. Chem. 278 (46): 46087–93. doi:10.1074/jbc.M306219200. PMID 12958311.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  74. ^ Wang L, Lin HK, Hu YC, Xie S, Yang L, Chang C (July 2004). "Suppression of androgen receptor-mediated transactivation and cell growth by the glycogen synthase kinase 3 beta in prostate cells". J. Biol. Chem. 279 (31): 32444–52. doi:10.1074/jbc.M313963200. PMID 15178691.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  75. ^ a b Gaughan L, Logan IR, Cook S, Neal DE, Robson CN (July 2002). "Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor". J. Biol. Chem. 277 (29): 25904–13. doi:10.1074/jbc.M203423200. PMID 11994312.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  76. ^ Veldscholte J, Berrevoets CA, Brinkmann AO, Grootegoed JA, Mulder E (March 1992). "Anti-androgens and the mutated androgen receptor of LNCaP cells: differential effects on binding affinity, heat-shock protein interaction, and transcription activation". Biochemistry. 31 (8): 2393–9. doi:10.1021/bi00123a026. PMID 1540595.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  77. ^ Nemoto T, Ohara-Nemoto Y, Ota M (September 1992). "Association of the 90-kDa heat shock protein does not affect the ligand-binding ability of androgen receptor". J. Steroid Biochem. Mol. Biol. 42 (8): 803–12. doi:10.1016/0960-0760(92)90088-Z. PMID 1525041. S2CID 24978960.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  78. ^ a b Bai S, He B, Wilson EM (February 2005). "Melanoma Antigen Gene Protein MAGE-11 Regulates Androgen Receptor Function by Modulating the Interdomain Interaction". Mol. Cell. Biol. 25 (4): 1238–57. doi:10.1128/MCB.25.4.1238-1257.2005. PMC 548016. PMID 15684378.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  79. ^ Bai S, Wilson EM (March 2008). "Epidermal Growth Factor-Dependent Phosphorylation and Ubiquitinylation of MAGE-11 Regulates Its Interaction with the Androgen Receptor". Mol. Cell. Biol. 28 (6): 1947–63. doi:10.1128/MCB.01672-07. PMC 2268407. PMID 18212060.
  80. ^ Wang Q, Sharma D, Ren Y, Fondell JD (November 2002). "A coregulatory role for the TRAP-mediator complex in androgen receptor-mediated gene expression". J. Biol. Chem. 277 (45): 42852–8. doi:10.1074/jbc.M206061200. PMID 12218053.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  81. ^ Sharma M, Zarnegar M, Li X, Lim B, Sun Z (November 2000). "Androgen receptor interacts with a novel MYST protein, HBO1". J. Biol. Chem. 275 (45): 35200–8. doi:10.1074/jbc.M004838200. PMID 10930412.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  82. ^ Ueda T, Mawji NR, Bruchovsky N, Sadar MD (October 2002). "Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells". J. Biol. Chem. 277 (41): 38087–94. doi:10.1074/jbc.M203313200. PMID 12163482.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  83. ^ Bevan CL, Hoare S, Claessens F, Heery DM, Parker MG (December 1999). "The AF1 and AF2 Domains of the Androgen Receptor Interact with Distinct Regions of SRC1". Mol. Cell. Biol. 19 (12): 8383–92. doi:10.1128/MCB.19.12.8383. PMC 84931. PMID 10567563.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  84. ^ a b Wang Q, Udayakumar TS, Vasaitis TS, Brodie AM, Fondell JD (April 2004). "Mechanistic relationship between androgen receptor polyglutamine tract truncation and androgen-dependent transcriptional hyperactivity in prostate cancer cells". J. Biol. Chem. 279 (17): 17319–28. doi:10.1074/jbc.M400970200. PMID 14966121.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  85. ^ a b c He B, Wilson EM (March 2003). "Electrostatic Modulation in Steroid Receptor Recruitment of LXXLL and FXXLF Motifs". Mol. Cell. Biol. 23 (6): 2135–50. doi:10.1128/MCB.23.6.2135-2150.2003. PMC 149467. PMID 12612084.
  86. ^ Tan JA, Hall SH, Petrusz P, French FS (September 2000). "Thyroid receptor activator molecule, TRAM-1, is an androgen receptor coactivator". Endocrinology. 141 (9): 3440–50. doi:10.1210/endo.141.9.7680. PMID 10965917.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  87. ^ Gnanapragasam VJ, Leung HY, Pulimood AS, Neal DE, Robson CN (December 2001). "Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer". Br. J. Cancer. 85 (12): 1928–36. doi:10.1054/bjoc.2001.2179. PMC 2364015. PMID 11747336.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  88. ^ a b c He B, Minges JT, Lee LW, Wilson EM (March 2002). "The FXXLF motif mediates androgen receptor-specific interactions with coregulators". J. Biol. Chem. 277 (12): 10226–35. doi:10.1074/jbc.M111975200. PMID 11779876.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  89. ^ Alen P, Claessens F, Schoenmakers E, Swinnen JV, Verhoeven G, Rombauts W, Peeters B (January 1999). "Interaction of the putative androgen receptor-specific coactivator ARA70/ELE1alpha with multiple steroid receptors and identification of an internally deleted ELE1beta isoform". Mol. Endocrinol. 13 (1): 117–28. doi:10.1210/mend.13.1.0214. PMID 9892017.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  90. ^ Yeh S, Chang C (May 1996). "Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells". Proc. Natl. Acad. Sci. U.S.A. 93 (11): 5517–21. doi:10.1073/pnas.93.11.5517. PMC 39278. PMID 8643607.
  91. ^ Miyamoto H, Yeh S, Wilding G, Chang C (June 1998). "Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells". Proc. Natl. Acad. Sci. U.S.A. 95 (13): 7379–84. doi:10.1073/pnas.95.13.7379. PMC 22623. PMID 9636157.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  92. ^ Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C (May 1999). "From HER2/Neu signal cascade to androgen receptor and its coactivators: A novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells". Proc. Natl. Acad. Sci. U.S.A. 96 (10): 5458–63. doi:10.1073/pnas.96.10.5458. PMC 21881. PMID 10318905.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  93. ^ Zhou ZX, He B, Hall SH, Wilson EM, French FS (February 2002). "Domain interactions between coregulator ARA(70) and the androgen receptor (AR)". Mol. Endocrinol. 16 (2): 287–300. doi:10.1210/mend.16.2.0765. PMID 11818501.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  94. ^ Gao T, Brantley K, Bolu E, McPhaul MJ (October 1999). "RFG (ARA70, ELE1) interacts with the human androgen receptor in a ligand-dependent fashion, but functions only weakly as a coactivator in cotransfection assays". Mol. Endocrinol. 13 (10): 1645–56. doi:10.1210/mend.13.10.0352. PMID 10517667.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  95. ^ Goo YH, Na SY, Zhang H, Xu J, Hong S, Cheong J, Lee SK, Lee JW (February 2004). "Interactions between activating signal cointegrator-2 and the tumor suppressor retinoblastoma in androgen receptor transactivation". J. Biol. Chem. 279 (8): 7131–5. doi:10.1074/jbc.M312563200. PMID 14645241.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  96. ^ Liao G, Chen LY, Zhang A, Godavarthy A, Xia F, Ghosh JC, Li H, Chen JD (February 2003). "Regulation of androgen receptor activity by the nuclear receptor corepressor SMRT". J. Biol. Chem. 278 (7): 5052–61. doi:10.1074/jbc.M206374200. PMID 12441355.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  97. ^ Dotzlaw H, Moehren U, Mink S, Cato AC, Iñiguez Lluhí JA, Baniahmad A (April 2002). "The amino terminus of the human AR is target for corepressor action and antihormone agonism". Mol. Endocrinol. 16 (4): 661–73. doi:10.1210/me.16.4.661. PMID 11923464.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  98. ^ Zhang Y, Fondell JD, Wang Q, Xia X, Cheng A, Lu ML, Hamburger AW (August 2002). "Repression of androgen receptor mediated transcription by the ErbB-3 binding protein, Ebp1". Oncogene. 21 (36): 5609–18. doi:10.1038/sj.onc.1205638. PMID 12165860. S2CID 22209143.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  99. ^ Yang F, Li X, Sharma M, Zarnegar M, Lim B, Sun Z (May 2001). "Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6". J. Biol. Chem. 276 (18): 15345–53. doi:10.1074/jbc.M010311200. PMID 11278661.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  100. ^ Lee SR, Ramos SM, Ko A, Masiello D, Swanson KD, Lu ML, Balk SP (January 2002). "AR and ER interaction with a p21-activated kinase (PAK6)". Mol. Endocrinol. 16 (1): 85–99. doi:10.1210/me.16.1.85. PMID 11773441.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  101. ^ a b Pero R, Lembo F, Palmieri EA, Vitiello C, Fedele M, Fusco A, Bruni CB, Chiariotti L (February 2002). "PATZ attenuates the RNF4-mediated enhancement of androgen receptor-dependent transcription". J. Biol. Chem. 277 (5): 3280–5. doi:10.1074/jbc.M109491200. PMID 11719514.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  102. ^ Kotaja N, Aittomäki S, Silvennoinen O, Palvimo JJ, Jänne OA (December 2000). "ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation". Mol. Endocrinol. 14 (12): 1986–2000. doi:10.1210/me.14.12.1986. PMID 11117529.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  103. ^ Moilanen AM, Karvonen U, Poukka H, Yan W, Toppari J, Jänne OA, Palvimo JJ (February 1999). "A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins". J. Biol. Chem. 274 (6): 3700–4. doi:10.1074/jbc.274.6.3700. PMID 9920921.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  104. ^ Zhao Y, Goto K, Saitoh M, Yanase T, Nomura M, Okabe T, Takayanagi R, Nawata H (August 2002). "Activation function-1 domain of androgen receptor contributes to the interaction between subnuclear splicing factor compartment and nuclear receptor compartment. Identification of the p102 U5 small nuclear ribonucleoprotein particle-binding protein as a coactivator for the receptor". J. Biol. Chem. 277 (33): 30031–9. doi:10.1074/jbc.M203811200. PMID 12039962.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  105. ^ a b Lin HK, Hu YC, Lee DK, Chang C (October 2004). "Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells". Mol. Endocrinol. 18 (10): 2409–23. doi:10.1210/me.2004-0117. PMID 15205473.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  106. ^ Wang L, Hsu CL, Ni J, Wang PH, Yeh S, Keng P, Chang C (March 2004). "Human Checkpoint Protein hRad9 Functions as a Negative Coregulator To Repress Androgen Receptor Transactivation in Prostate Cancer Cells". Mol. Cell. Biol. 24 (5): 2202–13. doi:10.1128/MCB.24.5.2202-2213.2004. PMC 350564. PMID 14966297.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  107. ^ Rao MA, Cheng H, Quayle AN, Nishitani H, Nelson CC, Rennie PS (December 2002). "RanBPM, a nuclear protein that interacts with and regulates transcriptional activity of androgen receptor and glucocorticoid receptor". J. Biol. Chem. 277 (50): 48020–7. doi:10.1074/jbc.M209741200. PMID 12361945.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  108. ^ Beitel LK, Elhaji YA, Lumbroso R, Wing SS, Panet-Raymond V, Gottlieb B, Pinsky L, Trifiro MA (August 2002). "Cloning and characterization of an androgen receptor N-terminal-interacting protein with ubiquitin-protein ligase activity". J. Mol. Endocrinol. 29 (1): 41–60. doi:10.1677/jme.0.0290041. PMID 12200228.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  109. ^ Lu J, Danielsen M (November 1998). "Differential regulation of androgen and glucocorticoid receptors by retinoblastoma protein". J. Biol. Chem. 273 (47): 31528–33. doi:10.1074/jbc.273.47.31528. PMID 9813067.
  110. ^ Yeh S, Miyamoto H, Nishimura K, Kang H, Ludlow J, Hsiao P, Wang C, Su C, Chang C (July 1998). "Retinoblastoma, a tumor suppressor, is a coactivator for the androgen receptor in human prostate cancer DU145 cells". Biochem. Biophys. Res. Commun. 248 (2): 361–7. doi:10.1006/bbrc.1998.8974. PMID 9675141.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  111. ^ Miyamoto H, Rahman M, Takatera H, Kang HY, Yeh S, Chang HC, Nishimura K, Fujimoto N, Chang C (February 2002). "A dominant-negative mutant of androgen receptor coregulator ARA54 inhibits androgen receptor-mediated prostate cancer growth". J. Biol. Chem. 277 (7): 4609–17. doi:10.1074/jbc.M108312200. PMID 11673464.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  112. ^ Kang HY, Yeh S, Fujimoto N, Chang C (March 1999). "Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor". J. Biol. Chem. 274 (13): 8570–6. doi:10.1074/jbc.274.13.8570. PMID 10085091.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  113. ^ Moilanen AM, Poukka H, Karvonen U, Häkli M, Jänne OA, Palvimo JJ (September 1998). "Identification of a Novel RING Finger Protein as a Coregulator in Steroid Receptor-Mediated Gene Transcription". Mol. Cell. Biol. 18 (9): 5128–39. doi:10.1128/MCB.18.9.5128. PMC 109098. PMID 9710597.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  114. ^ Poukka H, Aarnisalo P, Santti H, Jänne OA, Palvimo JJ (January 2000). "Coregulator small nuclear RING finger protein (SNURF) enhances Sp1- and steroid receptor-mediated transcription by different mechanisms". J. Biol. Chem. 275 (1): 571–9. doi:10.1074/jbc.275.1.571. PMID 10617653.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  115. ^ Liu Y, Kim BO, Kao C, Jung C, Dalton JT, He JJ (May 2004). "Tip110, the human immunodeficiency virus type 1 (HIV-1) Tat-interacting protein of 110 kDa as a negative regulator of androgen receptor (AR) transcriptional activation". J. Biol. Chem. 279 (21): 21766–73. doi:10.1074/jbc.M314321200. PMID 15031286.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  116. ^ Fu M, Liu M, Sauve AA; et al. (November 2006). "Hormonal control of androgen receptor function through SIRT1". Mol. Cell. Biol. 26 (21): 8122–35. doi:10.1128/MCB.00289-06. PMC 1636736. PMID 16923962. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  117. ^ Chipuk JE, Cornelius SC, Pultz NJ, Jorgensen JS, Bonham MJ, Kim SJ, Danielpour D (January 2002). "The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3". J. Biol. Chem. 277 (2): 1240–8. doi:10.1074/jbc.M108855200. PMID 11707452.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  118. ^ Hayes SA, Zarnegar M, Sharma M, Yang F, Peehl DM, ten Dijke P, Sun Z (March 2001). "SMAD3 represses androgen receptor-mediated transcription". Cancer Res. 61 (5): 2112–8. PMID 11280774.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  119. ^ Kang HY, Huang KE, Chang SY, Ma WL, Lin WJ, Chang C (November 2002). "Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4". J. Biol. Chem. 277 (46): 43749–56. doi:10.1074/jbc.M205603200. PMID 12226080.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  120. ^ Gobinet J, Auzou G, Nicolas JC, Sultan C, Jalaguier S (December 2001). "Characterization of the interaction between androgen receptor and a new transcriptional inhibitor, SHP". Biochemistry. 40 (50): 15369–77. doi:10.1021/bi011384o. PMID 11735420.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  121. ^ Unni E, Sun S, Nan B, McPhaul MJ, Cheskis B, Mancini MA, Marcelli M (October 2004). "Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence". Cancer Res. 64 (19): 7156–68. doi:10.1158/0008-5472.CAN-04-1121. PMID 15466214. S2CID 9228479.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  122. ^ Powell SM, Christiaens V, Voulgaraki D, Waxman J, Claessens F, Bevan CL (March 2004). "Mechanisms of androgen receptor signalling via steroid receptor coactivator-1 in prostate". Endocr. Relat. Cancer. 11 (1): 117–30. doi:10.1677/erc.0.0110117. PMID 15027889.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  123. ^ Yuan X, Lu ML, Li T, Balk SP (December 2001). "SRY interacts with and negatively regulates androgen receptor transcriptional activity". J. Biol. Chem. 276 (49): 46647–54. doi:10.1074/jbc.M108404200. PMID 11585838.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  124. ^ Matsuda T, Junicho A, Yamamoto T, Kishi H, Korkmaz K, Saatcioglu F, Fuse H, Muraguchi A (April 2001). "Cross-talk between signal transducer and activator of transcription 3 and androgen receptor signaling in prostate carcinoma cells". Biochem. Biophys. Res. Commun. 283 (1): 179–87. doi:10.1006/bbrc.2001.4758. PMID 11322786.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  125. ^ Ueda T, Bruchovsky N, Sadar MD (March 2002). "Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways". J. Biol. Chem. 277 (9): 7076–85. doi:10.1074/jbc.M108255200. PMID 11751884.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  126. ^ Ting HJ, Yeh S, Nishimura K, Chang C (January 2002). "Supervillin associates with androgen receptor and modulates its transcriptional activity". Proc. Natl. Acad. Sci. U.S.A. 99 (2): 661–6. doi:10.1073/pnas.022469899. PMC 117362. PMID 11792840.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  127. ^ Mu X, Chang C (October 2003). "TR2 orphan receptor functions as negative modulator for androgen receptor in prostate cancer cells PC-3". Prostate. 57 (2): 129–33. doi:10.1002/pros.10282. PMID 12949936. S2CID 24134119.
  128. ^ Lee YF, Shyr CR, Thin TH, Lin WJ, Chang C (December 1999). "Convergence of two repressors through heterodimer formation of androgen receptor and testicular orphan receptor-4: A unique signaling pathway in the steroid receptor superfamily". Proc. Natl. Acad. Sci. U.S.A. 96 (26): 14724–9. doi:10.1073/pnas.96.26.14724. PMC 24715. PMID 10611280.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  129. ^ Wang X, Yang Y, Guo X, Sampson ER, Hsu CL, Tsai MY, Yeh S, Wu G, Guo Y, Chang C (May 2002). "Suppression of androgen receptor transactivation by Pyk2 via interaction and phosphorylation of the ARA55 coregulator". J. Biol. Chem. 277 (18): 15426–31. doi:10.1074/jbc.M111218200. PMID 11856738.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  130. ^ Hsiao PW, Chang C (August 1999). "Isolation and characterization of ARA160 as the first androgen receptor N-terminal-associated coactivator in human prostate cells". J. Biol. Chem. 274 (32): 22373–9. doi:10.1074/jbc.274.32.22373. PMID 10428808.
  131. ^ Miyajima N, Maruyama S, Bohgaki M, Kano S, Shigemura M, Shinohara N, Nonomura K, Hatakeyama S (May 2008). "TRIM68 regulates ligand-dependent transcription of androgen receptor in prostate cancer cells". Cancer Res. 68 (9): 3486–94. doi:10.1158/0008-5472.CAN-07-6059. PMID 18451177.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  132. ^ Poukka H, Aarnisalo P, Karvonen U, Palvimo JJ, Jänne OA (July 1999). "Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription". J. Biol. Chem. 274 (27): 19441–6. doi:10.1074/jbc.274.27.19441. PMID 10383460.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  133. ^ Müller JM, Isele U, Metzger E, Rempel A, Moser M, Pscherer A, Breyer T, Holubarsch C, Buettner R, Schüle R (February 2000). "FHL2, a novel tissue-specific coactivator of the androgen receptor". EMBO J. 19 (3): 359–69. doi:10.1093/emboj/19.3.359. PMC 305573. PMID 10654935.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  134. ^ Cheng S, Brzostek S, Lee SR, Hollenberg AN, Balk SP (July 2002). "Inhibition of the dihydrotestosterone-activated androgen receptor by nuclear receptor corepressor". Mol. Endocrinol. 16 (7): 1492–501. doi:10.1210/mend.16.7.0870. PMID 12089345.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  135. ^ Hodgson MC, Astapova I, Cheng S, Lee LJ, Verhoeven MC, Choi E, Balk SP, Hollenberg AN (February 2005). "The androgen receptor recruits nuclear receptor CoRepressor (N-CoR) in the presence of mifepristone via its N and C termini revealing a novel molecular mechanism for androgen receptor antagonists". J. Biol. Chem. 280 (8): 6511–9. doi:10.1074/jbc.M408972200. PMID 15598662.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  136. ^ Markus SM, Taneja SS, Logan SK, Li W, Ha S, Hittelman AB, Rogatsky I, Garabedian MJ (February 2002). "Identification and Characterization of ART-27, a Novel Coactivator for the Androgen Receptor N Terminus". Mol. Biol. Cell. 13 (2): 670–82. doi:10.1091/mbc.01-10-0513. PMC 65658. PMID 11854421.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  137. ^ Sharma M, Li X, Wang Y, Zarnegar M, Huang CY, Palvimo JJ, Lim B, Sun Z (November 2003). "hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci". EMBO J. 22 (22): 6101–14. doi:10.1093/emboj/cdg585. PMC 275443. PMID 14609956.{{cite journal}}: CS1 maint: multiple names: authors list (link)

External links edit


Category:Intracellular receptors Category:Transcription factors