The stem-loop secondary structure of a pre-microRNA fromBrassica oleracea.

MicroRNAs (miRNAs)are short ribonucleic acid (RNA) molecules, on average only 22 nucleotides long and are found in all eukaryotic cells. miRNAs are post-transcriptional regulators that bind to complementary sequences on target messenger RNA transcripts (mRNAs), usually resulting in translational repression and gene silencing.[1][2] The human genome may encode over 1000 miRNAs,[3][4] which may target about 60% of mammalian genes[5] and are abundant in many human cell types.[6]

miRNAs show very different characteristics between plants and metazoans. In plants the miRNA complementarity to its mRNA target is nearly perfect, with no or few mismatched bases. In metazoans on the other hand miRNA complementarity is far from perfect and one miRNA can target many different sites on the same mRNA or on many different mRNAs. Another difference is the location of target sites on mRNAs. In metazoans the miRNA target sites are in the three prime untranslated regions (3'UTR) of the mRNA. In plants targets can be located in the 3' UTR but are more often in the coding region itself.[7] MiRNAs are well conserved in eukaryotic organism and are thought to be a vital and evolutionary ancient component of genetic regulation.[8][9][10][11]

The first miRNAs were characterized in the early 1990s, but miRNAs were not recognized as a distinct class of biologic regulators with conserved functions until the early 2000s. Since then, miRNA research has revealed multiple roles in negative regulation (transcript degradation and sequestering, translational suppression) and possible involvement in positive regulation (transcriptional and translational activation). By affecting gene regulation, miRNAs are likely to be involved in most biologic processes.[12][13][14][15][16][17][18]Different sets of expressed miRNAs are found in different cell types and tissues.[19]

Aberrant expression of miRNAs has been implicated in numerous disease states, and miRNA-based therapies are under investigation.[20][21][22]

History edit

MicroRNAs were discovered in 1993 by Victor Ambros, Rosalind Lee and Rhonda Feinbaum during a study of the genelin-14 in C. elegans development.[23] They found that LIN-14 protein abundance was regulated by a short RNA product encoded by the lin-4 gene. A 61 nucleotide precursor from lin-4 gene matured to a 22 nucleotide RNA containing sequences partially complementary to multiple sequences in the 3’ UTR of the lin-14 mRNA. This complementarity was sufficient and necessary to inhibit the translation of lin-14 mRNA into LIN-14 protein. Retrospectively, the lin-4 small RNA was the first microRNA to be identified, though at the time, it was thought to be a nematode idiosyncrasy. Only in 2000 was a second RNA characterized: let-7, which repressed lin-41,lin-14, lin-28, lin-42, and daf-12 expression during developmental stage transitions in C. elegans. let-7 was soon found to be conserved in many species,[24][25] indicating the existence of a wider phenomenon.

Nomenclature edit

Under a standard nomenclature system, names are assigned to experimentally confirmed miRNAs before publication of their discovery.[26][27] The prefix "mir" is followed by a dash and a number, the latter often indicating order of naming. For example, mir-123 was named and likely discovered prior to mir-456. The uncapitalized "mir-" refers to the pre-miRNA, while a capitalized "miR-" refers to the mature form. miRNAs with nearly identical sequences bar one or two nucleotides are annotated with an additional lower case letter. For example, miR-123a would be closely related to miR-123b. Pre-miRNAs that lead to 100% identical mature miRNAs but that are located at different places in the genome are indicated with an additional dash-number suffix. For example, the pre-miRNAs hsa-mir-194-1 and hsa-mir-194-2 lead to an identical mature miRNA (hsa-miR-194) but are located in different regions of the genome. Species of origin is designated with a three-letter prefix, e.g., hsa-miR-123 would be from human (Homo sapiens) and oar-miR-123 would be a sheep (Ovis aries) miRNA. Other common prefixes include 'v' for viral (miRNA encoded by a viral genome) and 'd' for Drosophila miRNA (a fruit fly commonly studied in genetic research). When two mature microRNAs originate from opposite arms of the same pre-miRNA, they are denoted with a -3p or -5p suffix. (In the past, this distinction was also made with 's' (sense) and 'as' (antisense)). When relative expression levels are known, an asterisk following the name indicates an miRNA expressed at low levels relative to the miRNA in the opposite arm of a hairpin. For example, miR-123 and miR-123* would share a pre-miRNA hairpin, but more miR-123 would be found in the cell.

Biogenesis edit

 
MicroRNAs are produced from either their own genes or from introns

Most microRNA genes are found in intergenic regions or in anti-sense orientation to genes[28] and contain their own miRNA gene promoter and regulatory units.[28][29][30][31] As much as 40% of miRNA genes may lie in the introns of protein and non-protein coding genes or even in exons.[32] These are usually, though not exclusively, found in a sense orientation.[33][34] and thus usually are regulated together with their host genes.[32][35][36] Other miRNA genes showing a common promoter include the 42-48% of all miRNAs originating from polycistronic units containing 2-7 discrete loops from which mature miRNAs are processed,[29][37] although this does not necessarily mean the mature miRNAs of a family will be homologous in structure and function. The promoters mentioned have been shown to have some similarities in their motifs to promoters of other genes transcribed by RNA polymerase II such as protein coding genes.[29][38] The DNA template is not the final word on mature miRNA production: 6% of human miRNAs show RNA editing, the site-specific modification of RNA sequences to yield products different from those encoded by their DNA. This increases the diversity and scope of miRNA action beyond that implicated from the genome alone.

Transcription edit

miRNA genes are usually transcribed by RNA polymerase II (Pol II).[29][38] The polymerase often binds to a promoter found near the DNA sequence encoding what will become the hairpin loop of the pre-miRNA. The resulting transcript is capped with a specially-modified nucleotide at the 5’ end, polyadenylatedwith multiple adenosines (a poly(A) tail),[29][33] and spliced. The product, called a primary miRNA (pri-miRNA), may be hundreds or thousands of nucleotides in length and contain one or more miRNA stem loops.[29][33] When a stem loop precursor is found in the 3’ UTR, a transcript may serve as a pri-miRNA and a mRNA.[33] RNA polymerase III(Pol III) transcribes some miRNAs, especially those with upstream Alu sequences, transfer RNAs (tRNAs), and mammalian wide interspersed repeat (MWIR) promoter units.[39]

Nuclear processing edit

A single pri-miRNA may contain from one to six miRNA precursors. These hairpin loop structures are composed of about 70 nucleotides each. Each hairpin is flanked by sequences necessary for efficient processing. The double-stranded RNA structure of the hairpins in a pri-miRNA is recognized by a nuclear protein known as DiGeorge Syndrome Critical Region 8 (DGCR8 or "Pasha" in invertebrates), named for its association with DiGeorge Syndrome. DGCR8 associates with the enzyme Drosha, a protein that cuts RNA, to form the "Microprocessor" complex.[40] In this complex, DGCR8 orients the catalytic RNase III domain of Drosha to liberate hairpins from pri-miRNAs by cleaving RNA about eleven nucleotides from the hairpin base (two helical RNA turns into the stem). The resulting hairpin, known as a pre-miRNA, has a two-nucleotide overhang at its 3’ end; it has 3' hydroxyl and 5' phosphate groups.

pre-miRNAs that are spliced directly out of introns, bypassing the Microprocessor complex, are known as "mirtrons." Originally thought to exist only in Drosophila and C. elegans, mirtrons have now been found in mammals.[41]

Perhaps as many as 16% of pri-miRNAs may be altered through nuclear RNA editing.[42][43][44] Most commonly, enzymes known as adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine (A to I) transitions. RNA editing can halt nuclear processing (for example, of pri-miR-142, leading to degradation by the ribonuclease Tudor-SN) and alter downstream processes including cytoplasmic miRNA processing and target specificity (e.g., by changing the seed region of miR-376 in the central nervous system).[42]

Nuclear export edit

pre-miRNA hairpins are exported from the nucleus in a process involving the nucleocytoplasmic shuttleExportin-5. This protein, a member of the karyopherin family, recognizes a two-nucleotide overhang left by the RNase III enzyme Drosha at the 3' end of the pre-miRNA hairpin. Exportin-5-mediated transport to the cytoplasm is energy-dependent, using GTP bound to the Ran protein.[45]

Cytoplasmic processing edit

In the cytoplasm, the pre-miRNA hairpin is cleaved by the RNase III enzyme Dicer.[46] This endoribonuclease interacts with the 3' end of the hairpin and cuts away the loop joining the 3' and 5' arms, yielding an imperfect miRNA:miRNA* duplex about 22 nucleotides in length.[46]Overall hairpin length and loop size influence the efficiency of Dicer processing, and the imperfect nature of the miRNA:miRNA* pairing also affects cleavage.[46][47] Although either strand of the duplex may potentially act as a functional miRNA, only one strand is usually incorporated into the RNA-induced silencing complex (RISC) where the miRNA and its mRNA target interact.

Biogenesis in plants edit

miRNA biogenesis in plants differs from metazoan biogenesis mainly in the steps of nuclear processing and export. Instead of being cleaved by two different enzymes, once inside and once outside the nucleus, both cleavages of the plant miRNA is performed by a Dicer homolog, called Dicer-like1 (DL1). DL1 is only expressed in the nucleus of plant cells, which indicates that both reactions take place inside the nucleus. Before plant miRNA:miRNA* duplexes are transported out of the nucleus its 3' overhangs are methylated by a RNA methyltransferase protein called Hua-Enhancer1 (HEN1). The duplex is then transported out of the nucleus to the cytoplasm by a protein called Hasty (HST), an Exportin 5 homolog, where they disassemble and the mature miRNA is incorporated into the RISC.[48]

The RNA-induced silencing complex edit

The mature miRNA is part of an active RNA-induced silencing complex (RISC) containing Dicer and many associated proteins.[49] RISC is also known as a microRNA ribonucleoprotein complex (miRNP);[50] RISC with incorporated miRNA is sometimes referred to as "miRISC."

Dicer processing of the pre-miRNA is thought to be coupled with unwinding of the duplex. Generally, only one strand is incorporated into the miRISC, selected on the basis of its thermodynamic instability and weaker base-pairing relative to the other strand.(Krol et al., 2004)(Khvorova et al., 2003; Schwarz et al., 2003) The position of the stem-loop may also influence strand choice. (Lin et al., 2005) The other strand, called the passenger strand due to its lower levels in the steady state, is denoted with an asterisk (*) and is normally degraded. In some cases, both strands of the duplex are viable and become functional miRNA that target different mRNA populations.(Okamura et al., 2008)

Members of the argonaute (Ago) protein family are central to RISC function. Argonautes are needed for miRNA-induced silencing and contain two conserved RNA binding domains: a PAZ domain that can bind the single stranded 3’ end of the mature miRNA and a PIWI domain that structurally resembles ribonuclease-H and functions to interact with the 5’ end of the guide strand. They bind the mature miRNA and orient it for interaction with a target mRNA. Some argonautes, for example human Ago2, cleave target transcripts directly; argonautes may also recruit additional proteins to achieve translational repression.[51] The human genome encodes eight argonaute proteins divided by sequence similarities into two families: AGO (with four members present in all mammalian cells and called E1F2C/hAgo in humans), and PIWI (found in the germ line and hematopoietic stem cells).[51][52]

Additional RISC components include TRBP [human immunodeficiency virus (HIV) transactivating response RNA (TAR) binding protein],[53] PACT (protein activator of the interferon induced protein kinase (PACT), the SMN complex, fragile X mental retardation protein (FMRP), and Tudor staphylococcal nuclease-domain-containing protein (Tudor-SN).[54][55]

Mode of Silencing edit

Gene silencing may occur either via mRNA degradation or preventing mRNA from being translated. It has been demonstrated that if there is complete complementation between the miRNA and target mRNA sequence, Ago2 can cleave the mRNA and lead to direct mRNA degradation. Yet, if there isn't complete complementation the silencing is achieved by preventing translation.[citation needed]

miRNA turnover edit

Turnover of mature miRNA is needed for rapid changes in miRNA expression profiles. During miRNA maturation in the cytoplasm, uptake by the Argonaute protein is thought to stabilize the guide strand, while the opposite (* or "passenger") strand is preferentially destroyed. In what has been called a "Use it or lose it" strategy, Argonaute may preferentially retain miRNAs with many targets over miRNAs with few or no targets, leading to degradation of the non-targeting molecules.[56]

Decay of mature miRNAs in animals is mediated by the 5´-to-3´ exoribonuclease XRN2, also known as Rat1p.[57] In plants, SDN (small RNA degrading nuclease) family members degrade miRNAs in the opposite (3'-to-5') direction. Similar enzymes are encoded in animal genomes, but their roles have not yet been described.[56]

Several miRNA modifications affect miRNA stability. As indicated by work in the model organism Arabidopsis thaliana (thale cress), mature plant miRNAs appear to be stabilized by the addition of methyl moieties at the 3' end. The 2'-O-conjugated methyl groups block the addition of uracil (U) residues by uridyltransferase enzymes, a modification that may be associated with miRNA degradation. However, uridylation may also protect some miRNAs; the consequences of this modification are incompletely understood. Uridylation of some animal miRNAs has also been reported. Both plant and animal miRNAs may be altered by addition of adenine (A) residues to the 3' end of the miRNA. An extra A added to the end of mammalian miR-122, a liver-enriched miRNA important in Hepatitis C, stabilizes the molecule, and plant miRNAs ending with an adenine residue have slower decay rates.[56]

Cellular functions edit

The function of miRNAs appears to be in gene regulation. For that purpose, a miRNA is complementary to a part of one or more messenger RNAs (mRNAs). Animal miRNAs are usually complementary to a site in the 3' UTR whereas plant miRNAs are usually complementary to coding regions of mRNAs.[58] Perfect or near perfect base pairing with the target RNA promotes cleavage of the RNA.[59] This is the primary mode of plant microRNAs.[60] In animals, microRNAs more often only partially base pair and inhibit protein translation of the target mRNA[61] (this exists in plants as well but is less common).[60]MicroRNAs that are partially complementary to the target can also speed up deadenylation, causing mRNAs to be degraded sooner.[62] For partially complementary microRNA to recognise their targets, the nucleotides 2–7 of the miRNA ('seed region') still have to be perfectly complementary.[63] miRNAs occasionally also causes histone modification and DNA methylation of promoter sites and therefore affecting the expression of targeted genes.[64][65]

Animal microRNAs target in particular developmental genes. In contrast, genes involved in functions common to all cells, such as gene expression, have very few microRNA target sites and seem to be under selection to avoid targeting by microRNAs.[66]

dsRNA can also activate gene expression, a mechanism that has been termed "small RNA-induced gene activation" orRNAa. dsRNAs targeting gene promoters can induce potent transcriptional activation of associated genes. This was demonstrated in human cells using synthetic dsRNAs termed small activating RNAs (saRNAs),[67] but has also been demonstrated for endogenous microRNA.[68]

Evolution edit

MicroRNAs are significant phylogenetic markers because of their astonishingly low rate of evolution.[69] Their origin may have permitted the development of morphological innovation, and by making gene expression more specific and 'fine-tunable', permitted the genesis of complex organs[70] and perhaps, ultimately, complex life.[71] Indeed, rapid bursts of morphological innovation are generally associated with a high rate of microRNA accumulation.[69][70]

MicroRNAs originate predominantly by the random formation of hairpins in "non-coding" sections of DNA (i.e. introns or intergene regions), but also by the duplication and modification of existing microRNAs.[72] The rate of evolution (i.e. nucleotide substitution) in recently-originated microRNAs is comparable to that elsewhere in the non-coding DNA, implying evolution by neutral drift; however, older microRNAs have a much lower rate of change (often less than one substitution per hundred million years),[71] suggesting that once a microRNA gains a function it undergoes extreme purifying selection.[72] At this point, a microRNA is rarely lost from an animal's genome,[71] although microRNAs which are more recently derived (and thus presumably non-functional) are frequently lost.[72] This makes them a valuable phylogenetic marker, and they are being looked upon as a possible solution to such outstanding phylogenetic problems as the relationships of arthropods.[73]

MicroRNAs feature in the genomes of most eukaryotic organisms, from the brown algae[74] to the metazoa. Across all species, in excess of 5000 had been identified by March 2010.[75] Whilst short RNA sequences (50 – hundreds of base pairs) of a broadly comparable function occur in bacteria, bacteria lack true microRNAs.[76]

Experimental detection and manipulation of miRNA edit

MicroRNA expression can be quantified in a two-step polymerase chain reaction process of modified RT-PCRfollowed by quantitative real-time PCR. Variations of this method achieve absolute or relative quantification.[77] miRNAs can also be hybridized to microarrays, slides or chips with probes to hundreds or thousands of miRNA targets, so that relative levels of miRNAs can be determined in different samples.[78] The activity of an miRNA can be experimentally inhibited using a locked nucleic acid oligo, a Morpholinooligo[79][80] or a 2'-O-methyl RNA oligo.[81] MicroRNA maturation can be inhibited at several points by steric-blocking oligos.[82] The miRNA target site of an mRNA transcript can also be blocked by a steric-blocking oligo.[83][84] Additionally, a specific miRNA can be silenced by a complementary antagomir.

miRNA and disease edit

Just as miRNA is involved in the normal functioning of eukaryotic cells, so has dysregulation of miRNA been associated with disease. A manually curated, publicly available database miR2Disease documents known relationships between miRNA dysregulation and human disease.[85]

miRNA and cancer edit

Several miRNAs have been found to have links with some types of cancer.[86][87]

A study of mice altered to produce excess c-Myc — a protein with mutated forms implicated in several cancers — shows that miRNA has an effect on the development of cancer. Mice that were engineered to produce a surplus of types of miRNA found in lymphoma cells developed the disease within 50 days and died two weeks later. In contrast, mice without the surplus miRNA lived over 100 days.[86] Leukemia can be caused by the insertion of a viral genome next to the 17-92 array of microRNAs leading to increased expression of this microRNA.[88]

Another study found that two types of miRNA inhibit the E2F1 protein, which regulates cell proliferation. miRNA appears to bind to messenger RNA before it can be translated to proteins that switch genes on and off.[89]

By measuring activity among 217 genes encoding miRNA, patterns of gene activity that can distinguish types of cancers can be discerned. miRNA signatures may enable classification of cancer. This will allow doctors to determine the original tissue type which spawned a cancer and to be able to target a treatment course based on the original tissue type. miRNA profiling has already been able to determine whether patients with chronic lymphocytic leukemia had slow growing or aggressive forms of the cancer.[90]

Transgenic mice that over-express or lack specific miRNAs have provided insight into the role of small RNAs in various malignancies.[91]

miRNA and heart disease edit

The global role of miRNA function in the heart has been addressed by conditionally inhibiting miRNA maturation in themurine heart, and has revealed that miRNAs play an essential role during its development.[92][93] miRNA expression profiling studies demonstrate that expression levels of specific miRNAs change in diseased human hearts, pointing to their involvement in cardiomyopathies.[94][95][96] Furthermore, studies on specific miRNAs in animal models have identified distinct roles for miRNAs both during heart development and under pathological conditions, including the regulation of key factors important for cardiogenesis, the hypertrophic growth response, and cardiac conductance.[93][97][98][99][100][101]

miRNA and the nervous system edit

miRNAs appear to regulate the nervous system.[102] Neural miRNAs are involved at various stages of synaptic development, including dendritogenesis (involving miR-132, miR-134 and miR-124), synapseformation and synapse maturation (where miR-134 and miR-138 are thought to be involved).[103] Some studies find altered miRNA expression in schizophrenia.

[104][105]

miRNA and non-coding RNAs edit

When the human genome project mapped its first chromosome in 1999, it was predicted the genome would contain over 100,000 protein coding genes. However, only around 20,000 were eventually identified (International Human Genome Sequencing Consortium, 2004).[106] Since then, the advent of bioinformatics approaches combined with genome tiling studies examining the transcriptome,[107] systematic sequencing of full length cDNA libraries,[108] and experimental validation[109] (including the creation of miRNA derived antisense oligonucleotides called antagomirs) have revealed that many transcripts are non protein-coding RNA, including several snoRNAs and miRNAs.[110]

See also edit

References edit

  1. ^ Bartel, D. P. (2009). "MicroRNAs: Target Recognition and Regulatory Functions". Cell. 136 (2): 215–233. doi:10.1016/j.cell.2009.01.002. PMC 3794896. PMID 19167326.
  2. ^ Bartel DP (January 2004). "MicroRNAs: genomics, biogenesis, mechanism, and function". Cell. 116 (2): 281–97. doi:10.1016/s0092-8674(04)00045-5. PMID 14744438. S2CID 2669459.{{cite journal}}: CS1 maint: date and year (link)
  3. ^ Homo sapiens miRNAs in the miRBase atManchester University
  4. ^ Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (July 2005). "Identification of hundreds of conserved and nonconserved human microRNAs". Nat. Genet. 37 (7): 766–70. doi:10.1038/ng1590. PMID 15965474. S2CID 7746954.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  5. ^ Friedman RC, Farh KK, Burge CB, Bartel DP (January 2009). "Most mammalian mRNAs are conserved targets of microRNAs". Genome Res. 19 (1): 92–105. doi:10.1101/gr.082701.108. PMC 2612969. PMID 18955434.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  6. ^ Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (April 2003). "The microRNAs of Caenorhabditis elegans". Genes Dev. 17 (8): 991–1008. doi:10.1101/gad.1074403. PMC 196042. PMID 12672692.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  7. ^ He L, Hannon GJ (July 2004). "MicroRNAs: small RNAs with a big role in gene regulation". Nat. Rev. Genet. 5 (7): 522–31. doi:10.1038/nrg1379. PMID 15211354. S2CID 86602746.{{cite journal}}: CS1 maint: date and year (link)
  8. ^ Tanzer A, Stadler PF (May 2004). "Molecular evolution of a microRNA cluster". J. Mol. Biol. 339 (2): 327–35. doi:10.1016/j.jmb.2004.03.065. PMID 15136036.{{cite journal}}: CS1 maint: date and year (link)
  9. ^ Molnár A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (June 2007). "miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii". Nature. 447 (7148): 1126–9. doi:10.1038/nature05903. PMID 17538623. S2CID 4361256.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  10. ^ Kren BT, Wong PY, Sarver A, Zhang X, Zeng Y, Steer CJ (2009). "MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis". RNA Biol. 6 (1): 65–72. doi:10.4161/rna.6.1.7534. PMC 3972804. PMID 19106625.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Lee CT, Risom T, Strauss WM (April 2007). "Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny". DNA Cell Biol. 26 (4): 209–18. doi:10.1089/dna.2006.0545. PMID 17465887.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  12. ^ Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (February 2005). "Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs". Nature. 433 (7027): 769–73. doi:10.1038/nature03315. PMID 15685193. S2CID 4430576.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  13. ^ Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (April 2003). "bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila". Cell. 113 (1): 25–36. doi:10.1016/s0092-8674(03)00231-9. PMID 12679032. S2CID 17585984.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  14. ^ Cuellar TL, McManus MT (December 2005). "MicroRNAs and endocrine biology". J. Endocrinol. 187 (3): 327–32. doi:10.1677/joe.1.06426. PMID 16423811. S2CID 45228926.{{cite journal}}: CS1 maint: date and year (link)
  15. ^ Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (November 2004). "A pancreatic islet-specific microRNA regulates insulin secretion". Nature. 432 (7014): 226–30. doi:10.1038/nature03076. PMID 15538371. S2CID 4415988.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  16. ^ Chen CZ, Li L, Lodish HF, Bartel DP (January 2004). "MicroRNAs modulate hematopoietic lineage differentiation". Science. 303 (5654): 83–6. doi:10.1126/science.1091903. hdl:1721.1/7483. PMID 14657504. S2CID 7044929.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  17. ^ Wilfred BR, Wang WX, Nelson PT (July 2007). "Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways". Mol. Genet. Metab. 91 (3): 209–17. doi:10.1016/j.ymgme.2007.03.011. PMC 1978064. PMID 17521938.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  18. ^ Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (August 2005). "The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb". Proc. Natl. Acad. Sci. U.S.A. 102 (31): 10898–903. doi:10.1073/pnas.0504834102. PMC 1182454. PMID 16040801.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  19. ^ Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (April 2002). "Identification of tissue-specific microRNAs from mouse". Curr. Biol. 12 (9): 735–9. doi:10.1016/s0960-9822(02)00809-6. PMID 12007417. S2CID 7901788.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  20. ^ Trang, P.; Weidhaas, J. B.; Slack, F. J. (2008). "MicroRNAs as potential cancer therapeutics". Oncogene. 27 Suppl 2: S52–S57. doi:10.1038/onc.2009.353. PMID 19956180. S2CID 20072701.
  21. ^ Li, C.; Feng, Y.; Coukos, G.; Zhang, L. (2009). "Therapeutic MicroRNA Strategies in Human Cancer". The AAPS Journal. 11 (4): 747–757. doi:10.1208/s12248-009-9145-9. PMC 2782079. PMID 19876744.
  22. ^ Fasanaro, P.; Greco, S.; Ivan, M.; Capogrossi, M.; Martelli, F. (2010). "MicroRNA: emerging therapeutic targets in acute ischemic diseases". Pharmacology & Therapeutics. 125 (1): 92–104. doi:10.1016/j.pharmthera.2009.10.003. PMID 19896977.
  23. ^ Lee RC, Feinbaum RL, Ambros V (December 1993). "The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14". Cell. 75 (5): 843–54. doi:10.1016/0092-8674(93)90529-y. PMID 8252621. S2CID 205020975.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  24. ^ Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (February 2000). "The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans". Nature. 403 (6772): 901–6. doi:10.1038/35002607. PMID 10706289. S2CID 4384503.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  25. ^ Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (November 2000). "Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA". Nature. 408 (6808): 86–9. doi:10.1038/35040556. PMID 11081512. S2CID 4401732.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  26. ^ Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (March 2003). "A uniform system for microRNA annotation". RNA. 9 (3): 277–9. doi:10.1261/rna.2183803. PMC 1370393. PMID 12592000.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  27. ^ Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (January 2006). "miRBase: microRNA sequences, targets and gene nomenclature". Nucleic Acids Res. 34 (Database issue): D140–4. doi:10.1093/nar/gkj112. PMC 1347474. PMID 16381832.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  28. ^ a b Lau NC, Lim LP, Weinstein EG, Bartel DP (October 2001). "An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans". Science. 294 (5543): 858–62. doi:10.1126/science.1065062. PMID 11679671. S2CID 43262684.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  29. ^ a b c d e f Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (October 2004). "MicroRNA genes are transcribed by RNA polymerase II". EMBO J. 23 (20): 4051–60. doi:10.1038/sj.emboj.7600385. PMC 524334. PMID 15372072.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  30. ^ Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (October 2001). "Identification of novel genes coding for small expressed RNAs". Science. 294 (5543): 853–8. doi:10.1126/science.1064921. hdl:11858/00-001M-0000-0012-F65F-2. PMID 11679670. S2CID 18101169.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  31. ^ Lee RC, Ambros V (October 2001). "An extensive class of small RNAs in Caenorhabditis elegans". Science. 294 (5543): 862–4. doi:10.1126/science.1065329. PMID 11679672. S2CID 33480585.{{cite journal}}: CS1 maint: date and year (link)
  32. ^ a b Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (October 2004). "Identification of mammalian microRNA host genes and transcription units". Genome Res. 14 (10A): 1902–10. doi:10.1101/gr.2722704. PMC 524413. PMID 15364901.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  33. ^ a b c d Cai X, Hagedorn CH, Cullen BR (December 2004). "Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs". RNA. 10 (12): 1957–66. doi:10.1261/rna.7135204. PMC 1370684. PMID 15525708.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  34. ^ Weber MJ (January 2005). "New human and mouse microRNA genes found by homology search". FEBS J. 272 (1): 59–73. doi:10.1111/j.1432-1033.2004.04389.x. PMID 15634332. S2CID 32923462.{{cite journal}}: CS1 maint: date and year (link)
  35. ^ Kim YK, Kim VN (February 2007). "Processing of intronic microRNAs". EMBO J. 26 (3): 775–83. doi:10.1038/sj.emboj.7601512. PMC 1794378. PMID 17255951.{{cite journal}}: CS1 maint: date and year (link)
  36. ^ Baskerville S, Bartel DP (March 2005). "Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes". RNA. 11 (3): 241–7. doi:10.1261/rna.7240905. PMC 1370713. PMID 15701730.{{cite journal}}: CS1 maint: date and year (link)
  37. ^ Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005). "Clustering and conservation patterns of human microRNAs". Nucleic Acids Res. 33 (8): 2697–706. doi:10.1093/nar/gki567. PMC 1110742. PMID 15891114.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ a b Zhou X, Ruan J, Wang G, Zhang W (March 2007). "Characterization and identification of microRNA core promoters in four model species". PLOS Comput. Biol. 3 (3): e37. doi:10.1371/journal.pcbi.0030037. PMC 1817659. PMID 17352530.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  39. ^ Faller, M.; Guo, F. (2008). "MicroRNA biogenesis: there's more than one way to skin a cat". Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 1779 (11): 663–667. doi:10.1016/j.bbagrm.2008.08.005. PMC 2633599. PMID 18778799.
  40. ^ Gregory, R.; Chendrimada, T.; Shiekhattar, R. (2006). MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods in Molecular Biology (Clifton, N.J.). Vol. 342. pp. 33–48. doi:10.1385/1-59745-123-1:33. ISBN 1-59745-123-1. PMID 16957365.
  41. ^ Berezikov, E.; Chung, W.; Willis, J.; Cuppen, E.; Lai, E. (2007). "Mammalian mirtron genes". Molecular Cell. 28 (2): 328–336. doi:10.1016/j.molcel.2007.09.028. PMC 2763384. PMID 17964270.
  42. ^ a b Kawahara, Y.; Megraw, M.; Kreider, E.; Iizasa, H.; Valente, L.; Hatzigeorgiou, A.; Nishikura, K. (2008). "Frequency and fate of microRNA editing in human brain". Nucleic Acids Research. 36 (16): 5270–5280. doi:10.1093/nar/gkn479. PMC 2532740. PMID 18684997.
  43. ^ Winter, J.; Jung, S.; Keller, S.; Gregory, R.; Diederichs, S. (2009). "Many roads to maturity: microRNA biogenesis pathways and their regulation". Nature Cell Biology. 11 (3): 228–234. doi:10.1038/ncb0309-228. PMID 19255566. S2CID 205286318.
  44. ^ Ohman, M. (2007). "A-to-I editing challenger or ally to the microRNA process". Biochimie. 89 (10): 1171–1176. doi:10.1016/j.biochi.2007.06.002. PMID 17628290.
  45. ^ Murchison, E.; Hannon, G. (2004). "MiRNAs on the move: miRNA biogenesis and the RNAi machinery". Current Opinion in Cell Biology. 16 (3): 223–229. doi:10.1016/j.ceb.2004.04.003. PMID 15145345.
  46. ^ a b c Lund, E.; Dahlberg, J. (2006). "Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs". Cold Spring Harbor Symposia on Quantitative Biology. 71: 59–66. doi:10.1101/sqb.2006.71.050. PMID 17381281.
  47. ^ Ji, X. (2008). "The mechanism of RNase III action: how dicer dices". Current Topics in Microbiology and Immunology. 320: 99–116. doi:10.1007/978-3-540-75157-1_5. ISBN 978-3-540-75156-4. PMID 18268841.
  48. ^ Lelandais-Brière C, Sorin C, Declerck M, Benslimane A, Crespi M, Hartmann C (March 2010). "Small RNA diversity in plants and its impact in development". Current Genomics. 11 (1): 14–23. doi:10.2174/138920210790217918. PMC 2851111. PMID 20808519.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  49. ^ Rana, T. M. (2007). "Illuminating the silence: understanding the structure and function of small RNAs". Nature Reviews Molecular Cell Biology. 8 (1): 23–36. doi:10.1038/nrm2085. PMID 17183358. S2CID 8966239.
  50. ^ Schwarz, D.; Zamore, P. (2002). "Why do miRNAs live in the miRNP?". Genes & Development. 16 (9): 1025–1031. doi:10.1101/gad.992502. PMID 12000786. S2CID 39465891.
  51. ^ a b Pratt, A.; MacRae, I. (2009). "The RNA-induced silencing complex: a versatile gene-silencing machine". The Journal of Biological Chemistry. 284 (27): 17897–17901. doi:10.1074/jbc.R900012200. PMC 2709356. PMID 19342379.
  52. ^ Schwarz, D.; Zamore, P. (2002). "Why do miRNAs live in the miRNP?". Genes & Development. 16 (9): 1025–1031. doi:10.1101/gad.992502. PMID 12000786. S2CID 39465891.
  53. ^ MacRae, I.; Ma, E.; Zhou, M.; Robinson, C.; Doudna, J. (2008). "In vitro reconstitution of the human RISC-loading complex". Proceedings of the National Academy of Sciences of the United States of America. 105 (2): 512–517. Bibcode:2008PNAS..105..512M. doi:10.1073/pnas.0710869105. PMC 2206567. PMID 18178619.
  54. ^ Murchison, E.; Hannon, G. (2004). "MiRNAs on the move: miRNA biogenesis and the RNAi machinery". Current Opinion in Cell Biology. 16 (3): 223–229. doi:10.1016/j.ceb.2004.04.003. PMID 15145345.
  55. ^ Mourelatos Z, Dostie J, Paushkin S; et al. (March 2002). "miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs". Genes Dev. 16 (6): 720–8. doi:10.1101/gad.974702. PMC 155365. PMID 11914277. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  56. ^ a b c Kai, Z.; Pasquinelli, A. (2010). "MicroRNA assassins: factors that regulate the disappearance of miRNAs". Nature Structural & Molecular Biology. 17 (1): 5–10. doi:10.1038/nsmb.1762. PMC 6417416. PMID 20051982.
  57. ^ Chatterjee S, Großhans H (September 2009). "Active turnover modulates mature microRNA activity in Caenorhabditis elegans". Nature. 461 (7263): 546–459. doi:10.1038/nature08349. PMID 19734881. S2CID 4414841.{{cite journal}}: CS1 maint: date and year (link)
  58. ^ Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004). "Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets". Genome Biol. 5 (9): R65. doi:10.1186/gb-2004-5-9-r65. PMC 522872. PMID 15345049.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  59. ^ Kawasaki H, Taira K (2004). "MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells". Nucleic Acids Symp Ser. 48 (48): 211–2. doi:10.1093/nass/48.1.211. PMID 17150553.
  60. ^ a b Moxon S, Jing R, Szittya G; et al. (October 2008). "Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening". Genome Res. 18 (10): 1602–9. doi:10.1101/gr.080127.108. PMC 2556272. PMID 18653800. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  61. ^ Williams AE (February 2008). "Functional aspects of animal microRNAs". Cell. Mol. Life Sci. 65 (4): 545–62. doi:10.1007/s00018-007-7355-9. PMID 17965831. S2CID 5708394.{{cite journal}}: CS1 maint: date and year (link)
  62. ^ Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (January 2009). "Deadenylation is a widespread effect of miRNA regulation". RNA. 15 (1): 21–32. doi:10.1261/rna.1399509. PMC 2612776. PMID 19029310.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  63. ^ Mazière P, Enright AJ (June 2007). "Prediction of microRNA targets". Drug Discov. Today. 12 (11–12): 452–8. doi:10.1016/j.drudis.2007.04.002. PMID 17532529.{{cite journal}}: CS1 maint: date and year (link)
  64. ^ Tan Y, Zhang B, Wu T; et al. (February 2009). "Transcriptional inhibition of Hoxd4 expression by noncoding RNAs in human breast cancer cells". BMC Mol. Biol. 10 (1): 12. doi:10.1186/1471-2199-10-12. PMC 2680403. PMID 19232136. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  65. ^ Hawkins PG, Morris KV (March 2008). "RNA and transcriptional modulation of gene expression". Cell Cycle. 7 (5): 602–7. doi:10.4161/cc.7.5.5522. PMC 2877389. PMID 18256543.{{cite journal}}: CS1 maint: date and year (link)
  66. ^ Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005). "Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution". Cell. 123 (6): 1133–46. doi:10.1016/j.cell.2005.11.023. PMID 16337999. S2CID 8915364.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  67. ^ Li LC (2008). "Small RNA-Mediated Gene Activation". RNA and the Regulation of Gene Expression: A Hidden Layer of Complexity. Caister Academic Press. ISBN [[Special:BookSources/978-1-904455-25-7]|978-1-904455-25-7]]]. [http://www.horizonpress.com/rnareg. {{cite book}}: Check |isbn= value: invalid character (help)
  68. ^ Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008). "MicroRNA-373 induces expression of genes with complementary promoter sequences". Proc. Natl. Acad. Sci. U.S.A. 105 (5): 1608–13. doi:10.1073/pnas.0707594105. PMC 2234192. PMID 18227514.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  69. ^ a b Wheeler, B.; Heimberg, A.; Moy, V.; Sperling, E.; Holstein, T.; Heber, S.; Peterson, K. (2009). "The deep evolution of metazoan microRNAs". Evolution & Development. 11 (1): 50–68. doi:10.1111/j.1525-142X.2008.00302.x. PMID 19196333. S2CID 14924603.
  70. ^ a b Heimberg, A.; Sempere, L.; Moy, V.; Donoghue, P.; Peterson, K. (2008). "MicroRNAs and the advent of vertebrate morphological complexity". Proceedings of the National Academy of Sciences of the United States of America. 105 (8): 2946–2950. Bibcode:2008PNAS..105.2946H. doi:10.1073/pnas.0712259105. PMC 2268565. PMID 18287013.
  71. ^ a b c Peterson, K.; Dietrich, M.; McPeek, M. (2009). "MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion". BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology. 31 (7): 736–747. doi:10.1002/bies.200900033. PMID 19472371. S2CID 15364875.
  72. ^ a b c Nozawa, M.; Miura, S.; Nei, M. (2010). "Origins and Evolution of MicroRNA Genes in Drosophila Species". Genome Biology and Evolution. 2010: 180–189. doi:10.1093/gbe/evq009. PMC 2942034. PMID 20624724.
  73. ^ Caravas, J.; Friedrich, M. (2010). "Of mites and millipedes: Recent progress in resolving the base of the arthropod tree". BioEssays. 32 (6): 488–95. doi:10.1002/bies.201000005. PMID 20486135. S2CID 20548122.
  74. ^ Cock, J. M.; Sterck, L.; Rouzé, P.; Scornet, D.; Allen, A. E.; Amoutzias, G.; Anthouard, V.; Artiguenave, F. O.; Aury, J. M.; Badger, J. H.; Beszteri, B.; Billiau, K.; Bonnet, E.; Bothwell, J. H.; Bowler, C.; Boyen, C.; Brownlee, C.; Carrano, C. J.; Charrier, B. N. D.; Cho, G. Y.; Coelho, S. M.; Collén, J.; Corre, E.; Da Silva, C.; Delage, L.; Delaroque, N.; Dittami, S. M.; Doulbeau, S.; Elias, M.; Farnham, G. (2010). "The Ectocarpus genome and the independent evolution of multicellularity in brown algae". Nature. 465 (7298): 617–621. Bibcode:2010Natur.465..617C. doi:10.1038/nature09016. PMID 20520714. S2CID 4329490.
  75. ^ Dimond, Patricia F. (15 March 2010). "miRNAs' Therapeutic Potential". Genetic Engineering & Biotechnology News. Vol. 30, no. 6. p. 1. Archived from the original on 10 July 2010. Retrieved 10 July 2010.
  76. ^ Tjaden, B.; Goodwin, S. S.; Opdyke, J. A.; Guillier, M.; Fu, D. X.; Gottesman, S.; Storz, G. (2006). "Target prediction for small, noncoding RNAs in bacteria". Nucleic Acids Research. 34 (9): 2791–802. doi:10.1093/nar/gkl356. PMC 1464411. PMID 16717284.
  77. ^ Chen, C.; Ridzon, D. A.; Broomer, A. J.; Zhou, Z.; Lee, D. H.; Nguyen, J. T.; Barbisin, M.; Xu, N. L.; Mahuvakar, V. R.; Andersen, M. R.; Lao, K. Q.; Livak, K. J.; Guegler, K. J. (25 October 2005). "Real-time quantification of microRNAs by stem–loop RT–PCR". Nucleic Acids Research. 33 (20): e179. doi:10.1093/nar/gni178. PMC 1292995. PMID 16314309.
  78. ^ Shingara J, Keiger K, Shelton J, Laosinchai-Wolf W, Powers P, Conrad R, Brown D, Labourier E (September 2005). "An optimized isolation and labeling platform for accurate microRNA expression profiling". RNA. 11 (9): 1461–70. doi:10.1261/rna.2610405. PMC 1370829. PMID 16043497.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  79. ^ Kloosterman WP, Wienholds E, Ketting RF, Plasterk RH (2004). "Substrate requirements for let-7 function in the developing zebrafish embryo". Nucleic Acids Res. 32 (21): 6284–91. doi:10.1093/nar/gkh968. PMC 535676. PMID 15585662.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  80. ^ Flynt AS, Li N, Thatcher EJ, Solnica-Krezel L, Patton JG (February 2007). "Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate". Nat. Genet. 39 (2): 259–63. doi:10.1038/ng1953. PMC 3982799. PMID 17220889.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  81. ^ Meister G, Landthaler M, Dorsett Y, Tuschl T (March 2004). "Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing". RNA. 10 (3): 544–50. doi:10.1261/rna.5235104. PMC 1370948. PMID 14970398.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  82. ^ Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (August 2007). "Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development". PLOS Biol. 5 (8): e203. doi:10.1371/journal.pbio.0050203. PMC 1925136. PMID 17676975.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  83. ^ Choi, Wen-Yee; Giraldez, Antonio J.; Schier, Alexander F. (2007). "Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by miR-430". Science. 318 (5848): 271–4. doi:10.1126/science.1147535. PMID 17761850. S2CID 30461594. {{cite journal}}: |format= requires |url= (help)
  84. ^ Klein, E.; Lioy, T.; Ma, L.; Impey, S.; Mandel, G.; Goodman, H. (December 2007). "Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA". Nature Neuroscience. 10 (12): 1513–1514. doi:10.1038/nn2010. ISSN 1097-6256. PMID 17994015. S2CID 29308441.
  85. ^ Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y. (January 2009). "miR2Disease: a manually curated database for microRNA deregulation in human disease". Nucleic Acids Research. 37 (Database issue) (Database issue): D98–104. doi:10.1093/nar/gkn714. PMC 2686559. PMID 18927107.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  86. ^ a b He L, Thomson JM, Hemann MT; et al. (June 2005). "A microRNA polycistron as a potential human oncogene". Nature. 435 (7043): 828–33. doi:10.1038/nature03552. PMC 4599349. PMID 15944707. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  87. ^ Mraz M, Pospisilova S, Malinova K; et al. (March 2009). "MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes". Leuk Lymphoma. 50 (3): 506–9. doi:10.1080/10428190902763517. PMID 19347736. S2CID 205701018. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  88. ^ Cui JW, Li YJ, Sarkar A, Brown J, Tan YH, Premyslova M, Michaud C, Iscove N, Wang GJ, Ben-David Y. (June 2007). "Retroviral insertional activation of the Fli-3 locus in erythroleukemias encoding a cluster of microRNAs that convert Epo-induced differentiation to proliferation". Blood. 110 (7): 2631–40. doi:10.1182/blood-2006-10-053850. PMID 17586726.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  89. ^ O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (June 2005). "c-Myc-regulated microRNAs modulate E2F1 expression". Nature. 435 (7043): 839–43. doi:10.1038/nature03677. PMID 15944709. S2CID 4424010.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  90. ^ Lu J, Getz G, Miska EA; et al. (June 2005). "MicroRNA expression profiles classify human cancers". Nature. 435 (7043): 834–8. doi:10.1038/nature03702. PMID 15944708. S2CID 4423938. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  91. ^ Zanesi, N (2010). "MicroRNAs in mouse models of lymphoid malignancies". J Nucl Acid Invest. 1 (8): 36–40. doi:10.4081/jnai.2010.e8. PMC 3111058. PMID 21666870. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  92. ^ Chen JF, Murchison EP, Tang R; et al. (February 2008). "Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure". Proc. Natl. Acad. Sci. U.S.A. 105 (6): 2111–6. doi:10.1073/pnas.0710228105. PMC 2542870. PMID 18256189. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  93. ^ a b Zhao Y, Ransom JF, Li A; et al. (April 2007). "Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2". Cell. 129 (2): 303–17. doi:10.1016/j.cell.2007.03.030. PMID 17397913. S2CID 10796290. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  94. ^ Thum T, Galuppo P, Wolf C; et al. (July 2007). "MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure". Circulation. 116 (3): 258–67. doi:10.1161/CIRCULATIONAHA.107.687947. PMID 17606841. S2CID 84291929. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  95. ^ van Rooij E, Sutherland LB, Liu N; et al. (November 2006). "A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure". Proc. Natl. Acad. Sci. U.S.A. 103 (48): 18255–60. doi:10.1073/pnas.0608791103. PMC 1838739. PMID 17108080. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  96. ^ Tatsuguchi M, Seok HY, Callis TE; et al. (June 2007). "Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy". J. Mol. Cell. Cardiol. 42 (6): 1137–41. doi:10.1016/j.yjmcc.2007.04.004. PMC 1934409. PMID 17498736. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  97. ^ Zhao Y, Samal E, Srivastava D (July 2005). "Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis". Nature. 436 (7048): 214–20. doi:10.1038/nature03817. PMID 15951802. S2CID 4340449.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  98. ^ Xiao J, Luo X, Lin H; et al. (April 2007). "MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts". J. Biol. Chem. 282 (17): 12363–7. doi:10.1074/jbc.C700015200. PMID 17344217. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  99. ^ Yang B, Lin H, Xiao J; et al. (April 2007). "The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2". Nat. Med. 13 (4): 486–91. doi:10.1038/nm1569. PMID 17401374. S2CID 1935811. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  100. ^ Carè A, Catalucci D, Felicetti F; et al. (May 2007). "MicroRNA-133 controls cardiac hypertrophy". Nat. Med. 13 (5): 613–8. doi:10.1038/nm1582. PMID 17468766. S2CID 10097893. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  101. ^ van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (April 2007). "Control of stress-dependent cardiac growth and gene expression by a microRNA". Science (Journal). 316 (5824): 575–9. doi:10.1126/science.1139089. PMID 17379774. S2CID 1927839.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  102. ^ Maes OC, Chertkow HM, Wang E, Schipper HM. MicroRNA: implications for alzheimer disease and other human CNS disorders. Curr. Genomics 2009, 10 (3)154-168. PMID 19881909
  103. ^ Schratt G (December 2009). "microRNAs at the synapse". Nat. Rev. Neurosci. 10 (12): 842–9. doi:10.1038/nrn2763. PMID 19888283. S2CID 3507952.{{cite journal}}: CS1 maint: date and year (link)
  104. ^ Feng J, Sun G, Yan J, Noltner K, Li W, Buzin CH, Longmate J, Heston LL, Rossi J, Sommer SS (2009). "Evidence for X-chromosomal schizophrenia associated with microRNA alterations". PLOS ONE. 4 (7): e6121. doi:10.1371/journal.pone.0006121. PMC 2699475. PMID 19568434.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  105. ^ Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ (September 2009). "Schizophrenia is associated with an increase in cortical microRNA biogenesis". Mol. Psychiatry. 15 (12): 1176–1189. doi:10.1038/mp.2009.84. PMC 2990188. PMID 19721432.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  106. ^ Pheasant M, Mattick JS (September 2007). "Raising the estimate of functional human sequences". Genome Res. 17 (9): 1245–53. doi:10.1101/gr.6406307. PMID 17690206.{{cite journal}}: CS1 maint: date and year (link)
  107. ^ Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S, Gerstein M, Snyder M (December 2004). "Global identification of human transcribed sequences with genome tiling arrays". Science. 306 (5705): 2242–6. doi:10.1126/science.1103388. PMID 15539566. S2CID 396518.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  108. ^ Ota T, Suzuki Y, Nishikawa T; et al. (January 2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039. S2CID 21903526. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  109. ^ Kuhn DE, Martin MM, Feldman DS, Terry AV, Nuovo GJ, Elton TS (January 2008). "Experimental validation of miRNA targets". Methods. 44 (1): 47–54. doi:10.1016/j.ymeth.2007.09.005. PMC 2237914. PMID 18158132.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  110. ^ Hüttenhofer A, Schattner P, Polacek N (May 2005). "Non-coding RNAs: hope or hype?". Trends Genet. 21 (5): 289–97. doi:10.1016/j.tig.2005.03.007. PMID 15851066.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)

Further reading edit

  • This paper discusses the processes that miRNA and siRNAs are involved in, in the context of 2 articles in the same issue of the journal Science: Baulcombe D (2002). "DNA events. An RNA microcosm". Science. 297 (5589): 2002–2003. doi:10.1126/science.1077906. PMID 12242426. S2CID 82531727.
  • This paper describes the discovery of lin-4, the first miRNA to be discovered: Lee RC, Feinbaum RL, Ambros V (1993). "The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14". Cell. 75 (5): 843–854. doi:10.1016/0092-8674(93)90529-Y. PMID 8252621. S2CID 205020975.{{cite journal}}: CS1 maint: multiple names: authors list (link)

External links edit



Category:Articles with inconsistent citation formats Category:RNA Category:MicroRNA