User:Jts1882/phylogeny/Birds

This page is a resource for the phylogeny of living birds. It contains cladograms of some of the major schemes and comparions of the major competing hypothese. The page is used to develop cladograms that are added to main namespace articles.

Useful references edit

Phylogeny
  • Yury et al. (2013).[1]
  • Jarvis et al (2014)[2]
  • Prum et al (2015)[3]
  • Suh (2016)[4]
  • Reddy et al (2017)[5]
  • Houde et al (2019)[6]
  • Braun et al (2019)[7]
  • Oliveros et al (2019)[8]
  • Kuhl et al (2021)[9]
Taxonomy/Checklists
  • Howard & Moore Checklist (4th ed, volume 1, 2013)[10]
  • Howard & Moore Checklist (4th ed, volume 2, 2014)[11]
  • Cracraft (2014)[12]

Comparison of recent phylogenies edit

Compares the two main large-scale molecular studies with additional notes.

Early divisions edit

Prum et al (2015))[3] Jarvis et al (2014)[2] Other:

General agreement that modern birds are divided into Palaeognathae and Neognathae, with the latter split between Galloanserae (fowl) and Neoaves.

Aves

Jarvis et al (2014) shows same overall topology, although only sampled ostrich and tinamous in Palaeognathae.


The latest B10K Project study (Feng et al, 2020) finds rheas as sister to tinamous in their family tree (the.


Paleognathae

Struthioniformes (Ostriches)

Apterygiformes (Kiwis)

Casuariiformes (Cassowaries, Emus)

Rheiformes (Rheas)

Tinamiformes (Tinamous)

Palaeognathae with extinct species following Mitchel et al (2014).[13]

Kuhl et al (2020)

 
Paleognathae

Struthioniformes (Ostriches)

Rheiformes (Rheas)

Apterygiformes (Kiwis)

Casuariiformes (Cassowaries, Emus)

Tinamiformes (Tinamous)

Neognathae
Galloanserae

Anseriformes (Waterfowl)

Galliformes (Landfowl)

Neoaves

Boyd's Taxonomy in Flux

 
Paleognathae

Struthioniformes (Ostriches)

Rheiformes (Rheas)

Casuariiformes (Cassowaries, Emus)

Apterygiformes (Kiwis)

Tinamiformes (Tinamous)

Neognathae
Galloanserae

Anseriformes (Waterfowl)

Galliformes (Landfowl)

Neoaves

Neoaves overview edit

The early diversification of the various neoavian groups occurred very rapidly around the Cretaceous–Paleogene extinction event.[14] As a result of the rapid radiation, attempts to resolve their relationships have produced conflicting results, some quite controversial, especially in the earlier studies.[15][16][7] Nevertheless, some recent large phylogenomic studies of Neoaves have led to much progress on defining orders and supraordinal groups within Neoaves. Still, the studies have failed to produce to a consensus on an overall high order topology of these groups.[2][3][5][7] A genomic study of 48 taxa by Jarvis et al. (2014) divided Neoaves into two main clades, Columbea and Passerea, but an analysis of 198 taxa by Prum et al. (2015) recovered different groupings for the earliest split in Neoaves.[2][3] A reanalysis with an extended dataset by Reddy et al. (2017) suggested this was due to the type of sequence data, with coding sequences favouring the Prum topology.[5] The disagreement on topology even with large phylogenomic studies led Suh (2016) to propose a hard polytomy of nine clades as the base of Neoaves.[4]

Current: An analysis by Houde et al. (2019) recovered Columbea and a reduced hard polytomy of six clades within Passerea.[6] Possible(down play reduced polytomy): ... although recovered some structure with a polytomy in Passerea. [6]

Despite other disagreements, these studies do agree on a number of supraorderal groups, which Reddy et al. (2017) dubbed the "magnificent seven", which together with three "orphaned orders" make up Neoaves.[5] Significantly, they both include a large waterbird clade (Aequornithes) and a large landbird clade (Telluraves). The groups defined by Reddy et al. (2017) are as follows:

  • The "magnificent seven" supraordinal clades:
  1. Telluraves (landbirds)
  2. Aequornithes (waterbirds)
  3. Phaethontimorphae (sunbittern, kagu and tropicbirds)
  4. Otidimorphae (turacos, bustards and cuckoos)
  5. Strisores (nightjars, swifts, hummingbirds and allies)
  6. Columbimorphae (mesites, sandgrouse and pigeons)
  7. Mirandornithes (flamingos and grebes)

  Three more recent genome scale analyses have recovered some higher structure.[9][17][18] All three recover Columbaves. An explanation for the previous recovery of Columbea was provided by the finding of ... a 21 Mb outlier region of chromosome 4 with an abnormally strong signal for Columbea. OR a region of chromosome 4 with suppressed recombination that providing a misleading phylogenetic signal.Cite error: The <ref> tag has too many names (see the help page).Cite error: The <ref> tag has too many names (see the help page). Kuhl et al (2021) and Stiller et al (2024) found Mirandornithes as the earliest diverging Neoavian group, which is consistent with findings of Columbea once the affect of the chromosome 4 anomaly is accounted for. [how to say and source this]

Stiller et al (2024) recovered a clade combining the waterbirds with shorebirds and some landbird groups, which they named Elementaves [=Strisores+Gruimorphae+Opisthocomiformes+Phaethoquornithes]. A clade with the same composition had previously been recovered by Houde et al (2019). Wu el al (2024) found a similar clade, except it also included Mirandornithes. Kuhl et al (2021) also recovered a clade with Strisores and the orphan orders, but grouped with Columbaves rather than Phaethoquornithes. [again how to make these comparison with proper sourcing]


Neoaves comparison edit

Prum et al (2015))[3] Jarvis et al (2014)[2] Other: Hackett et al (2008), Yuri et al (2013), Suh et al (2016), Houde et al (2019)[4][6]

There is considerable disagreement on the arrangement of Neoaves, although the presence of two large clades representing water and land birds is a common feature.


Neoaves
Strisores

Caprimulgiformes (nightjars)

Steatornithiformes (oilbird)

Nyctibiiformes (potoos)

Podargiformes (frogmouths)

Aegotheliformes (owlet-nightjars)

Apodiformes (hummingbirds, treeswifts, and swifts)

Gruiformes (rails and cranes)

Aequorlitornithes

Mirandornithes(flamingos and grebes)

Charadriiformes (waders and relatives)

Ardeae

Eurypygimorphae (sunbittern and tropicbirds)

Aequornithes (core waterbirds)

(water birds)
Inopinaves

Opisthocomiformes (hoatzin)

Telluraves (core landbirds)

(land birds)
Neoaves
Columbea
Passerea
Otidae
Gruae
Ardeae
Phaethontimorphae

Eurypygiformes (sunbittern, kagu)

Phaethontiformes (tropicbirds)

(Eurypygimorphae)

Aequornithes (loons, penguins, herons, pelicans, storks, etc)

Telluraves (core landbirds)

Boyd's Taxonomy in Flux opts for polytomies where there is disagreement

Neoaves
Columbimorphae

Mesitornithiformes (Mesites)

Pterocliformes (Sandgrouse)

Columbiformes (Pigeons & Doves)

Otidimorphae

Musophagiformes (Turacos)

Otidiformes (Bustards)

Cuculiformes (Cuckoos)

Strisores

Caprimulgiformes (Nightjars)

Steatornithiformes (Oilbird)

Nyctibiiformes (Potoos)

Podargiformes (Frogmouths)

Apodiformes (Owlet-Nightjars, Swifts, Hummers)

???

Opisthocomiformes (Hoatzin)

Mirandornithes (Flamingos, Grebes)

Gruiformes (Cranes, Rails)

Ardeae

Eurypygimorphae (sunbittern, kagu, tropicbirds)

Aequornithes (waterbirds)

Charadriiformes (Shorebirds, Gulls, Alcids)

Telluraves

Suh-2016 hard polytomy (Fig 1) and Jarvis/Prum consensus tree (Reddy-2017, Fig S1a)
Neoaves
VII

Mirandornithes (Flamingos, Grebes)

VI
Columbimorphae

Mesitornithiformes (Mesites)

Pterocliformes (Sandgrouse)

Columbiformes (Pigeons & Doves)

V
Strisores

Caprimulgiformes (Nightjars)

Steatornithiformes (Oilbird)

Nyctibiiformes (Potoos)

Podargiformes (Frogmouths)

Apodiformes (Owlet-Nightjars, Swifts, Hummers)

IV
Otidimorphae

Musophagiformes (Turacos)

Otidiformes (Bustards)

Cuculiformes (Cuckoos)

Opisthocomiformes (Hoatzin)

Gruiformes (Cranes, Rails)

Charadriiformes (Shorebirds, Gulls, Alcids)

Ardeae
III

Eurypygimorphae (sunbittern, kagu, tropicbirds)

II

Aequornithes (waterbirds)

I

Telluraves

Houde-2019
Neoaves
Columbea
Passerea
Otidimorphae

Cuculiformes (cuckoos)

Otidiformes (bustards)

Musophagiformes (turacos)

reduced
Caprimulgimorphae

Caprimulgiformes (nightjars)

Caprimulgiformes(swifts)

Caprimulgiformes(hummingbirds)

(Cypselomorphae)

Opisthocomiformes (hoatzin)

Gruiformes (cranes)

Charadriiformes (plovers)

Ardeae
Phaethontimorphae

Eurypygiformes (sunbittern, kagu)

Phaethontiformes (tropicbirds)

(Eurypygimorphae)

Aequornithes (loons, penguins, herons, pelicans, storks, etc)

Telluraves (core landbirds)

polytomy
Neoavian tree summary

  • Jarvis-2014 TENT (total evidence nuclotide tree) - Columbea and Passerea (based on 42 Mbp of data extracted from 48 complete avian genomes) [character rich; 46% intron, 32% exon, 22% non-coding UCEs]
  • Prum et al. (2015) - no Columbea+Passerea split, extended waterbird clade (based on 0.4 Mbp of data from 259 loci obtained by sequence capture (anchored hybrid enrichment) and sampled for 198 bird species) [taxon rich; 82.5% exonic]
  • Suh-2016 hard polytomy (Fig 1, left) - nine-way hard polytomy
  • Reddy-2017 consensus (Fig 8) - groups clades VII and VII (Columbea) with Passerea in a seven-way polytomy
  • Reddy-2017 early bird II tree (non-coding, extended sampling) - basal split into Columbea (VII+VI) and Passerea (I-V + 3 orphaned orders) follows Jarvis-2014 TENT, but Passera split into two large clades (sequential listing):
    • Otimorphae (IV), Gruiformes, Aeqornithes (II, waterbirds)
    • Charadriiformes, Opisthocomiformes, Caprimulgiformes (V, Strisores), Eurypygimorphae (III, not in Ardeae), Telluraves (I, landbirds)
  • Kimball-2019 supertree - follows Jarvis-2014 for the ten clades
  • Houde-2019 hard polytomy (Fig 1) - as Suh-2016 (Fig 1)
  • Houde-2019 reduced polytomy (Fig 12, middle) - recognises Columbea (VII,VI) and Passerea. Otidimorphae (IV) is basal in Passerea, with remainder in 6-way polytomy: Caprimulgiformes (V, Strisores), Opisthocomiformes, Charadriiformes, Gruiformes, Ardeae (II+III), Telluraves (I, landbirds)

There is disagreement on the arrangement of shore, water and land birds, as well as the position of the hoatzin (Opisthocomiformes).

Gruiformes (rails and cranes)

Aequorlitornithes
Mirandornithes

Phoenicopteriformes (flamingos)

Podicipediformes (grebes)

Charadriiformes (waders and relatives)

Eurypygimorphae

Phaethontiformes (tropicbirds)

Eurypygiformes (sunbittern and kagu)

Aequornithes

Gaviiformes (loons)

Austrodyptornithes

Procellariiformes (albatross and petrels)

Sphenisciformes (penguins)

Ciconiiformes (storks)

Suliformes (boobies, cormorants, etc.)

Pelecaniformes (pelicans, herons, ibises, etc.)

(core waterbirds)
Inopinaves

Opisthocomiformes (hoatzin)

Telluraves (core landbirds)

(land birds)
???
Gruae

Opisthocomiformes (hoatzin)

Cursorimorphae

Gruiformes (cranes)

Charadriiformes (plovers)

(shorebirds)
Ardeae

Telluraves (core landbirds)

Boyd's Taxonomy in Flux opts for polytomies where there is disagreement

???

Opisthocomiformes (Hoatzin)

Mirandornithes

Phoenicopteriformes (Flamingos)

Podicipediformes (Grebes)

Gruiformes (Cranes, Rails)

Ardeae
Eurypygimorphae

Eurypygiformes (Kagu & Sunbittern)

Phaethontiformes (Tropicbirds)

Aequornithes

Gaviiformes (Loons)

Sphenisciformes (Penguins)

Procellariiformes (Tubenoses)

Ciconiiformes (Storks)

Suliformes (Boobies, Cormorants)

Plataleiformes (Ibises)

Pelecaniformes (Pelicans)

Ardeiformes (Herons)

Charadriiformes (Shorebirds, Gulls, Alcids)

Telluraves (landbirds)

There is general agreement on the arrangement of water birds in Ardeae, except for exact arrangement in Pelicanimorphae.

Ardeae
Eurypygimorphae

Phaethontiformes (tropicbirds)

Eurypygiformes (sunbittern and kagu)

Aequornithes

Gaviiformes (loons)

Austrodyptornithes

Procellariiformes (albatross and petrels)

Sphenisciformes (penguins)

Ciconiiformes (storks)

Suliformes (boobies, cormorants, etc.)

Pelecaniformes (pelicans, herons, ibises, etc.)

(core waterbirds)

Boyd's Taxonomy in Flux

Ardeae
Eurypygimorphae

Eurypygiformes (Kagu & Sunbittern)

Phaethontiformes (Tropicbirds)

Aequornithes

Gaviiformes (Loons)

Sphenisciformes (Penguins)

Procellariiformes (Tubenoses)

Ciconiiformes (Storks)

Suliformes (Boobies, Cormorants)

Plataleiformes (Ibises)

Pelecaniformes (Pelicans)

Ardeiformes (Herons)

There is also general agreement on the arrangement of core land birds in Telluraves. The main difference is that Prum et al (2015) find the hawks and vultures basal within core landbirds, rather than within Afroaves (making Afroaves paraphyletic).

Telluraves
Accipitrimorphae

Cathartiformes (New World vultures)

Accipitriformes (hawks and relatives)

(as Accipitriformes)
Eutelluraves

Strigiformes (owls)

Coraciimorphae

Coliiformes (mouse birds)

Leptosomatiformes (cuckoo roller)

Trogoniformes (trogons)

Bucerotiformes (hornbills and relatives)

Coraciformes (kingfishers and relatives)

Piciformes (woodpeckers and relatives)

Australaves

Cariamiformes (seriemas)

Falconiformes (falcons)

Psittaciformes (parrots)

Passeriformes (passerines)

(core landbirds)
Telluraves
Afroaves
Accipitrimorphae

Cathartiformes (condors and New World vultures)

Accipitriformes (hawks, eagles, Old World vultures etc.)

Strigiformes (owls)

Coraciimorphae

Coliiformes (mousebirds)

Leptosomatiformes (cuckoo roller)

Trogoniformes (trogons)

Bucerotiformes (hornbills, hoopoe and wood hoopoes)

Coraciformes (kingfishers etc.)

Piciformes (woodpeckers, toucans etc.)

Australaves

Cariamiformes (seriemas, terror birds etc)

Falconiformes (falcons)

Psittaciformes (parrots)

Passeriformes (songbirds and kin)

Boyd's Taxonomy in Flux follows Jarvis et al (2014) and Prum et al (2015), except for the position of Coliiformes (which follows Suh et al, 2015). Yuri et al (2013) has them as sister to Strigiformes

Telluraves
Afroaves

Coliiformes (Mousebirds)

Accipitrimorphae

Cathartiformes (New World Vultures)

Accipitriformes (Hawks)

Strigiformes (Owls)

Picimorphae

Leptosomiformes (Cuckoo Roller)

Trogoniformes (Trogons)

Bucerotiformes (Hoopoes, Hornbills)

Coraciiformes (Bee-eaters, Kingfishers, Rollers)

Piciformes (Jacamars, Puffbirds, Toucans, Woodpeckers)

Australaves

Cariamiformes (Seriemas)

Falconiformes (Falcons)

Psittaciformes (Parrots)

Passeriformes (Suboscines, Songbirds)

Houde et al (2019)

Telluraves
Accipitrimorphae

Cathartiformes (condors and New World vultures)

Accipitriformes (hawks, eagles, Old World vultures etc.)

Strigiformes (owls)

Coraciimorphae

Coliiformes (mousebirds)

Cavitaves

Leptosomatiformes (cuckoo roller)

Trogoniformes (trogons)

Bucerotiformes (hornbills, hoopoe and wood hoopoes)

Coraciformes (kingfishers etc.)

Piciformes (woodpeckers, toucans etc.)

Australaves

Cariamiformes (seriemas, terror birds etc)

Falconiformes (falcons)

Psittaciformes (parrots)

Passeriformes (songbirds and kin)

Jarvis et al (2014) phylogeny edit

  • Whole genome phylogeny of Jarvis et al (2014)[2], with ordinal names after Yury et al. (2013).[1]
    • Cladogram copied from old version of article Bird (5 March 2017)


Aves
Palaeognathae

Struthioniformes (ostriches)

Notopalaeognathae

Rheiformes (rheas)

Novaeratitae

Casuariiformes (emus & cassowaries)

Apterygiformes (kiwis)

Aepyornithiformes (elephant birds)

Neognathae
Galloanserae

Galliformes (chicken, grouse, turkeys, etc.)

Odontoanserae
Neoaves
Columbea
Passerea

Cypselomorphae (hummingbirds, swifts)

Otidimorphae

Cuculiformes (cuckoos)

Otidiformes (bustards)

Musophagiformes (turacos)

Opisthocomiformes (hoatzin)

Cursorimorphae

Gruiformes (rails and cranes)

Charadriiformes (gulls, auks, shorebirds, waders)

Aequornithes

Gaviiformes (loons)

Austrodyptornithes

Procellariiformes (albatross and petrels)

Sphenisciformes (penguins)

Suliformes (boobies, cormorants, etc.)

Ciconiiformes (storks)

Pelecaniformes (pelicans, herons, ibises, etc.)

(core waterbirds)
Eurypygimorphae

Eurypygiformes (sunbittern, kagu)

Phaethontiformes (tropicbirds)

Telluraves
Afroaves
Accipitrimorphae

Cathartiformes (condors and New World vultures)

Accipitriformes (hawks, eagles, Old World vultures etc.)

Strigiformes (owls)

Coraciimorphae

Coliiformes (mousebirds)

Eucavitaves

Leptosomatiformes (cuckoo roller)

Cavitaves

Trogoniformes (trogons)

Picocoraciae

Bucerotiformes (hornbills, hoopoe and wood hoopoes)

Coraciformes (kingfishers etc.)

Piciformes (woodpeckers, toucans etc.)

Australaves

Cariamiformes (seriemas, terror birds etc)

Eufalconimorphae

Falconiformes (falcons)

Psittacopasserae

Psittaciformes (parrots)

Passeriformes (songbirds and kin)

Prum et al (2015) phylogeny edit

Aves
Palaeognathae
Neognathae
Galloanserae

Galliformes (chickens and relatives)

Anseriformes (ducks and relatives)

Neoaves
Strisores

Caprimulgiformes (nightjars)

Steatornithiformes (oilbird)

Nyctibiiformes (potoos)

Podargiformes (frogmouths)

Aegotheliformes (owlet-nightjars)

Apodiformes (hummingbirds, treeswifts, and swifts)

Gruiformes (rails and cranes)

Aequorlitornithes
Mirandornithes

Phoenicopteriformes (flamingos)

Podicipediformes (grebes)

Charadriiformes (waders and relatives)

Eurypygimorphae

Phaethontiformes (tropicbirds)

Eurypygiformes (sunbittern and kagu)

Aequornithes

Gaviiformes (loons)

Austrodyptornithes

Procellariiformes (albatross and petrels)

Sphenisciformes (penguins)

Ciconiiformes (storks)

Suliformes (boobies, cormorants, etc.)

Pelecaniformes (pelicans, herons, ibises, etc.)

(core waterbirds)
Inopinaves

Opisthocomiformes (hoatzin)

Telluraves
Accipitrimorphae

Cathartiformes (New World vultures)

Accipitriformes (hawks and relatives)

Eutelluraves
Afroaves

Strigiformes (owls)

Coraciimorphae

Coliiformes (mouse birds)

Cavitaves

Leptosomatiformes (cuckoo roller)

Eucavitaves

Trogoniformes (trogons)

Picocoraciae

Bucerotiformes (hornbills and relatives)

Coraciformes (kingfishers and relatives)

Piciformes (woodpeckers and relatives)

sensu stricto
Australaves
(core landbirds)

Orders of bird by authority edit

Orders of birds as defined by various authorities.[7]

Taxa H&M [10][11] Clements [25] IOC [26] HBW/Birdlife [27] TiF[28] Notes
Number of orders: 37 extant 41 [a] 40 [b] 36 [c] 46 [d] 35/45 [e]
Number of families: 236 249 252 243
Number of species: 10,021 10,550 10,694 10,964 Numbers as stated in Braun et al (2019).[7]
Number of species: 10,175 (v4.1) 10,721
(BOW,June-2021)
10,964
(IOC 11.1)
11,122 (v2)
11,126 (v3)
11,147 (v4)
11,158 (v5)
Updates
Palaeognathae
 Ostrich Struthioniformes Struthioniformes Struthioniformes
 Rheas Rheiformes Rheiformes
 Emu and cassowaries Casuariiformes Casuariiformes
 Kiwis Apterygiformes Apterygiformes
 Elephant birds† Aepyornithiformes n/a
 Moas† Dinornithiformes
 Tinamous Tinamiformes Struthioniformes Tinamiformes
Galloanseres
 Waterfowl Anseriformes
 Landfowl Galliformes
Neoaves
 1. Telluraves (“core landbirds”)
  1a. Australaves (originally “Australavis” in Ericson 2012)
   Passerines Passeriformes
   Parrots Psittaciformes
   Falcons Falconiformes traditionally also includes hawks, eagles and vultures
   Seriemas Cariamiformes traditional Gruiformes
  1b. Afroaves (monophyly uncertain; Cavitaves sensu Yuri et al. 2013 italicized)
   Woodpeckers and allies Piciformes Piciformes Piciformes
   Puffbirds and jacamars Galbuliformes
   Rollers and allies Coraciiformes traditional Coraciiformes
   Hornbills and allies Bucerotiformes traditional Coraciiformes
   Trogons Trogoniformes
   Cuckoo roller Leptosomiformes traditional Coraciiformes
   Mousebirds Coliiformes
   Owls Strigiformes
   Hawks and allies Accipitriformes Accipitriformes Accipitriformes Accipitriformes traditional Falconiformes
   New World vultures Cathartiformes Cathartiformes
 2. Aequornithes (“core waterbirds”)
  Penguins Sphenisciformes traditionally first branching lineage from all other extant birds
  Tubenoses Procellariiformes
  Pelicans Pelecaniformes Pelecaniformes Pelecaniformes includes several familiies traditionally placed in Ciconiiformes
  Ibises Plataleiformes traditional Ciconiiformes
  Herons Ardeiformes
  Cormorants and allies Suliformes traditional Pelecaniformes
  Storks Ciconiiformes traditional Ciconiiformes
  Loons Gaviiformes
 3. Phaethontimorphae
  Sunbittern and Kagu Phaethontiformes traditional Pelecaniformes
  Tropicbirds Eurypygiformes traditional Gruiformes
 4. Otidimorphae
  Cuckoos Cuculiformes traditional Cuculiformes
  Bustards Otidiformes traditional Gruiformes
  Turacos Musophagiformes Cuculiformes Musophagiformes traditional Cuculiformes
 5. Caprimulgiformes (Strisores)
  Hummingbirds Caprimulgiformes Apodiformes Caprimulgiformes Apodiformes traditional Apodiformes
  Swifts and tree-swifts
  Owlet-nightjars traditional Caprimulgiformes
  Frogmouths Caprimulgiformes Podargiformes
  Nightjars Caprimulgiformes
  Potoos Nyctibiiformes
  Oilbird Steatornithiformes
 6. Columbimorphae
  Mesites Mesitornithiformes traditional Gruiformes
  Sandgrouse Pterocliformes traditional Columbiformes
  Doves Columbiformes
 7. Phoenicopterimorphae (Mirandornithes)
  Grebes Podicipediformes
  Flamingos Phoenicopteriformes
“Orphan orders” (monophyly uncertain)
 Hoatzin Opisthocomiformes traditional all over the place
 Cranes, rails, and allies Gruiformes Cursorimorphae sensu Jarvis et al. 2014
 Shorebirds Charadriiformes
  1. ^ Also recognises Galbuliformes (split from Piciformes), Cathartiformes (split from Accipitriformes), Suliformes and Ciconiiformes (both from Pelecaniformes). Now recognises Musophagiformes, but included in Cuculiformes at time of Brawn review. Net +4 compared to H&M.
  2. ^ Also recognises: Suliformes and Ciconiiformes (both from Pelecaniformes); and Apodiformes (not included in Caprimulgiformes. Net +3 compared to H&M.
  3. ^ Also recognises Cathartiformes (split from Accipitriformes, Suliformes and Ciconiiformes (both from Pelecaniformes), but doesn't recognise the Palaeognathan orders Rheiformes, Casuariiformes, Apterygiformes or Tinamiformes (all included in Struthioniformes). Net -1 compared to H&M.
  4. ^ Most inclusive, including all proposed orders except Galbuliformes
  5. ^ Recent phylogenetic studies recognised 35 (Kuhl at al, 2020) and 45 (Prum et al, 2015) orders respectively.

Taxonomy in Flux bird families edit

  • NEORNITHES: 46 Orders (Source: Boyd's Taxonomy in Flux); revised December 15, 2016
  • NEORNITHES: 252 Families (Source: Boyd's Taxonomy in Flux; revised December 15, 2016)

Orders edit

Cladogram commented out because it exceeds template transclusion limits.

 
Paleognathae

Struthioniformes (Ostriches)

Rheiformes (Rheas)

Casuariiformes (Cassowaries, Emus)

Apterygiformes (Kiwis)

Tinamiformes (Tinamous)

Neognathae
Galloanserae

Anseriformes (Waterfowl)

Galliformes (Landfowl)

Neoaves
Columbimorphae

Mesitornithiformes (Mesites)

Pterocliformes (Sandgrouse)

Columbiformes (Pigeons & Doves)

Otidimorphae

Musophagiformes (Turacos)

Otidiformes (Bustards)

Cuculiformes (Cuckoos)

Strisores

Caprimulgiformes (Nightjars)

Steatornithiformes (Oilbird)

Nyctibiiformes (Potoos)

Podargiformes (Frogmouths)

Apodiformes (Owlet-Nightjars, Swifts, Hummers)

???

Opisthocomiformes (Hoatzin)

Mirandornithes

Phoenicopteriformes (Flamingos)

Podicipediformes (Grebes)

Gruiformes (Cranes, Rails)

Ardeae
Eurypygimorphae

Eurypygiformes (Kagu & Sunbittern)

Phaethontiformes (Tropicbirds)

Aequornithes

Gaviiformes (Loons)

Sphenisciformes (Penguins)

Procellariiformes (Tubenoses)

Ciconiiformes (Storks)

Suliformes (Boobies, Cormorants)

Plataleiformes (Ibises)

Pelecaniformes (Pelicans)

Ardeiformes (Herons)

Charadriiformes (Shorebirds, Gulls, Alcids)

Telluraves
Afroaves

Coliiformes (Mousebirds)

Accipitrimorphae

Cathartiformes (New World Vultures)

Accipitriformes (Hawks)

Strigiformes (Owls)

Picimorphae

Leptosomiformes (Cuckoo Roller)

Trogoniformes (Trogons)

Bucerotiformes (Hoopoes, Hornbills)

Coraciiformes (Bee-eaters, Kingfishers, Rollers)

Piciformes (Jacamars, Puffbirds, Toucans, Woodpeckers)

Australaves

Cariamiformes (Seriemas)

Falconiformes (Falcons)

Psittaciformes (Parrots)

Passeriformes (Suboscines, Songbirds)

Non-passerines families edit

Passerines families edit

References edit

  1. ^ a b c Yuri, T.; et al. (2013). "Parsimony and Model-Based Analyses of Indels in Avian Nuclear Genes Reveal Congruent and Incongruent Phylogenetic Signals". Biology. 2 (1): 419–444. doi:10.3390/biology2010419. PMC 4009869. PMID 24832669. Cite error: The named reference "Yuri-2013" was defined multiple times with different content (see the help page).
  2. ^ a b c d e f Jarvis, E.D.; et al. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–1331. Bibcode:2014Sci...346.1320J. doi:10.1126/science.1253451. hdl:10072/67425. PMC 4405904. PMID 25504713. Cite error: The named reference "Jarvis-2014" was defined multiple times with different content (see the help page).
  3. ^ a b c d e f Prum, Richard O.; Berv, Jacob S.; Dornburg, Alex; Field, Daniel J.; Townsend, Jeffrey P.; Lemmon, Emily Moriarty; Lemmon, Alan R. (2015). "A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing". Nature. 526 (7574): 569–573. doi:10.1038/nature15697. ISSN 0028-0836. PMID 26444237. S2CID 205246158. Cite error: The named reference "Prum-2015" was defined multiple times with different content (see the help page).
  4. ^ a b c d Suh, Alexander (2016). "The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves". Zoologica Scripta. 45: 50–62. doi:10.1111/zsc.12213. ISSN 0300-3256. S2CID 88559920. Cite error: The named reference "Suh2016" was defined multiple times with different content (see the help page).
  5. ^ a b c d e f Reddy, Sushma; Kimball, Rebecca T.; Pandey, Akanksha; Hosner, Peter A.; Braun, Michael J.; Hackett, Shannon J.; Han, Kin-Lan; Harshman, John; Huddleston, Christopher J.; Kingston, Sarah; Marks, Ben D.; Miglia, Kathleen J.; Moore, William S.; Sheldon, Frederick H.; Witt, Christopher C.; Yuri, Tamaki; Braun, Edward L. (2017). "Why Do Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the Avian Tree of Life more than Taxon Sampling". Systematic Biology. 66 (5): 857–879. doi:10.1093/sysbio/syx041. ISSN 1063-5157. PMID 28369655.
  6. ^ a b c d e f Houde, Peter; Braun, Edward L.; Narula, Nitish; Minjares, Uriel; Mirarab, Siavash (2019). "Phylogenetic Signal of Indels and the Neoavian Radiation". Diversity. 11 (7): 108. doi:10.3390/d11070108. ISSN 1424-2818. Cite error: The named reference "HoudeBraun2019" was defined multiple times with different content (see the help page).
  7. ^ a b c d e Braun, Edward L.; Cracraft, Joel; Houde, Peter (2019). "Resolving the Avian Tree of Life from Top to Bottom: The Promise and Potential Boundaries of the Phylogenomic Era". Avian Genomics in Ecology and Evolution. pp. 151–210. doi:10.1007/978-3-030-16477-5_6. ISBN 978-3-030-16476-8. S2CID 198399272. Cite error: The named reference "BraunCracraft2019" was defined multiple times with different content (see the help page).
  8. ^ Oliveros, Carl H.; Field, Daniel J.; Ksepka, Daniel T.; Barker, F. Keith; Aleixo, Alexandre; Andersen, Michael J.; Alström, Per; Benz, Brett W.; Braun, Edward L.; Braun, Michael J.; Bravo, Gustavo A.; Brumfield, Robb T.; Chesser, R. Terry; Claramunt, Santiago; Cracraft, Joel; Cuervo, Andrés M.; Derryberry, Elizabeth P.; Glenn, Travis C.; Harvey, Michael G.; Hosner, Peter A.; Joseph, Leo; Kimball, Rebecca T.; Mack, Andrew L.; Miskelly, Colin M.; Peterson, A. Townsend; Robbins, Mark B.; Sheldon, Frederick H.; Silveira, Luís Fábio; Smith, Brian Tilston; White, Noor D.; Moyle, Robert G.; Faircloth, Brant C. (2019). "Earth history and the passerine superradiation". Proceedings of the National Academy of Sciences. 116 (16): 7916–7925. doi:10.1073/pnas.1813206116. ISSN 0027-8424.
  9. ^ a b c Kuhl., H.; Frankl-Vilches, C.; Bakker, A.; Mayr, G.; Nikolaus, G.; Boerno, S. T.; Klages, S.; Timmermann, B.; Gahr, M. (2021). "An unbiased molecular approach using 3'UTRs resolves the avian family-level tree of life". Molecular Biology and Evolution. 38: 108–127. doi:10.1093/molbev/msaa191. PMC 7783168. PMID 32781465.
  10. ^ a b Dickinson, EC; Remsen, JV Jr (2013). The Howard and Moore complete checklist of the birds of the world. Vol. 1. Passerines. (4th ed.). Aves Press, Eastbourne.
  11. ^ a b Dickinson, EC; Christidis, L (2014). The Howard and Moore complete checklist of the birds of the world. Vol. 2. Passerines (4th ed.). Aves Press, Eastbourne.
  12. ^ Cracraft, J. (2014). "Avian Higher-level Relationships and Classification: Passeriforms". In Dickinson, E.C. &; Christidis, L. (eds.). The Howard and Moore Complete Checklist of the Birds of the World. Vol. 2 (4th ed.). Eastbourne, U.K.: Aves Press. pp. xvii–xlv.
  13. ^ Mitchell, K. J.; Llamas, B.; Soubrier, J.; Rawlence, N. J.; Worthy, T. H.; Wood, J.; Lee, M. S. Y.; Cooper, A. (2014-05-23). "Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution". Science. 344 (6186): 898–900. doi:10.1126/science.1251981. PMID 24855267. S2CID 206555952.
  14. ^ Claramunt, S.; Cracraft, J. (2015). "A new time tree reveals Earth history's imprint on the evolution of modern birds". Sci Adv. 1 (11): e1501005. Bibcode:2015SciA....1E1005C. doi:10.1126/sciadv.1501005. PMC 4730849. PMID 26824065.
  15. ^ Mayr, G (2011). "Metaves, Mirandornithes, Strisores and other novelties - a critical review of the higher-level phylogeny of neornithine birds". J Zool Syst Evol Res. 49: 58–76. doi:10.1111/j.1439-0469.2010.00586.x.
  16. ^ Matzke, A. et al. (2012) "Retroposon insertion patterns of neoavian birds: strong evidence for an extensive incomplete lineage sorting era" Mol. Biol. Evol.
  17. ^ a b Wu, S.; Rheindt, F.E.; Zhang, J.; Wang, J.; Zhang, L.; Quan, C.; Zhiheng, L.; Wang, M.; Wu, F.; Qu, Y; Edwards, S.V.; Zhou, Z.; Liu, L. (2024). "Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous". Proceedings of the National Academy of Sciences. 121 (8). doi:10.1073/pnas.2319696121. PMC 10895254.
  18. ^ a b Stiller, J., Feng, S., Chowdhury, AA. et al. Complexity of avian evolution revealed by family-level genomes. Nature (2024). https://doi.org/10.1038/s41586-024-07323-1
  19. ^ Cite error: The named reference jarvis2014 was invoked but never defined (see the help page).
  20. ^ Prum, R.O.; et al. (2015). "A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing". Nature. 526 (7574): 569–573. Bibcode:2015Natur.526..569P. doi:10.1038/nature15697. PMID 26444237. S2CID 205246158.
  21. ^ Braun, Edward L.; Kimball, Rebecca T. (2021). "Data types and the phylogeny of Neoaves". Birds. 2 (1): 1–22. doi:10.3390/birds2010001.
  22. ^ Stiller, J.; Feng, S.; Chowdhury, A-A.; et al. (2024). "Complexity of avian evolution revealed by family-level genomes". Nature: in press. doi:10.1038/s41586-024-07323-1.
  23. ^ Kimball, R.T. et al. (2013) Identifying localized biases in large datasets: A case study using the Avian Tree of Life. Mol Phylogenet Evol. doi:10.1016/j.ympev.2013.05.029
  24. ^ Boyd, John (2007). "NEORNITHES: 46 Orders" (PDF). John Boyd's website. Retrieved 30 December 2017.
  25. ^ Clements, JF; Schulenberg, TS; Iliff, MJ; Roberson, D; Fredericks, TA; Sullivan, BL; Wood, CL (2017). "The eBird/Clements checklist of birds of the world". v2016. Retrieved 31 Aug 2017.
  26. ^ Gill, F; Donsker, D (2017). "IOC World Bird List". v 7.3. Retrieved 31 Aug 2017.
  27. ^ del Hoyo, J; Elliott, A; Sargatal, J; Christie, DA; de Juana, E, eds. (2017). "Handbook of the birds of the world alive". Lynx Edicions, Barcelona.
  28. ^ Boyd III, John H. (ed.). "Taxonomy in Flux Checklist 3.08". Taxonomy in Flux. Retrieved 4 September 2019.

See also:

  1. ^ Elizabeth Pennisi (2018). "Bigger, better bird tree of life will soon fly into view". Science (Apr. 16, 2018). doi:10.1126/science.aat8989.
  2. ^ Kat Eschner. "What We Can Learn From a New Bird Tree of Life". smithsonian.com.