Intro

Identification of minerals edit

Da.- Identification of minerals (white streak, Mohs lower than 4½) edit

  • Color: 0/ white (wht), translucent (tlc); 1/ grey, metallic (gry); 2/ yellow (yll); 3/ yellowish green (y-g); 4/ green (grn); 5/ bluish green (b-g); 6/ cyan (cyan); 7/ cyan-blue (c-b); 8/ blue (blue); 9/ violet (vlt); 10/ magenta (mgt); 11/ magenta-red (m-r); 12/ red (red); 13/ orange (org); 14/ brown, black grey (brw); 15/ black (blk); etc.
  • Crystal notation: 0/ amorphous; 1/ triclinic (Tri, point group 1 or 1); 2/ monoclinic (Mono, point group 2, m or 2/m); 22/ orthorhombic (Ortho, point group 222, mm2 or mmm); 4/ tetragonal (Tetra, point group 4...); 63/ hexagonal/trigonal (Trig, point group 3...); 66/ hexagonal/hexagonal (Hex, point group 6...); 3/ cubic or isometric (Iso, point group 23, m3, 432, 43m or m3m).
Mineral
name
# Strunz 10 ed
(Mindat)
Color
hue
Streak Mohs Density Point group  
Adamite 22.8E2 08.BB.30 0tlc 04.32 - 4.48 22/m 2/m 2/m Cat
Aerinite 11.3E1 09.DB.45 8blue to b-g blue-wht 3 02.48 633/m Cat
Ajoite 11.2E1 09.EA.70 5b-g grn-wht 02.96 11 Cat
Allophane 23.7E2 09.ED.20 0wht 3 01.9 0amorphous Cat
Alum-(K) 15.8E1 07.CC.20 0tlc 2 01.757 32/m 3 Cat
Aluminium 11.8E1 01.AA.05 0gry-wht 2 to 3½ 02.7 34/m 3 2/m Cat
Alumohydrocalcite 13.2E1 05.DB.05 0wht 02.23 11 Cat
Alunite 27.5E2 07.BC.10 0wht 3½ to 4 02.6 - 2.9 63Trig Cat
Alunogen 22.2E2 07.CB.45 0tlc 1½ to 2 01.65 - 1.78 11 Cat
Amesite 15.0E1 09.ED.15 0wht pale grn tint wht 2½ to 3 02.78 11 Cat
Anapaite 12.2E1 08.CH.10 0grn-wht 02.81 11 Cat
Ancylite-(Ce) 16.8E1 05.DC.05 2yll to brw 4 to 4½ 03.95 222/m 2/m 2/m Cat
Anhydrite 31.1E3 07.AD.30 0tlc to gry 3 to 3½ 02.98 222/m 2/m 2/m Cat
Ankerite 32.3E3 05.AB.10 14brw to gry 3½ to 4 02.9 - 3.1 633 Cat
Annite 22.3E2 09.EC.20 15blk brw-wht 3 03.17 22/m Cat
Antigorite 24.6E2 09.ED.15 4grn, grn-blue, wht grn-wht 3½ to 4 02.5 - 2.6 2m Cat
Aphthitalite 14.4E1 07.AC.35 4tlc, wht, gry 3 02.66 - 2.71 633 2/m Cat
Aragonite 32.4E3 05.AB.15 0tlc to gry tlc, wht 3½ to 4 02.947 222/m 2/m 2/m Cat
Arsendescloizite 11.7E1 08.BH.35 2yll to grn 4 06.57 222 2 2 Cat
Arsenolite 22.0E2 04.CB.50 0wht, bluish white to pale yll-wht 03.86 - 3.88 34/m 3 2/m Cat
Artinite 16.1E1 05.DA.10 0wht 02.01 - 2.03 2Mono Cat
Austinite 17.2E1 08.BH.35 0tlc 4 to 4½ 04.13 222 2 2 Cat
Calcite 41.9E4 05.AB.05 0tlc to brw 3 02.71 633 2/m Cat
Cattierite 11.9E1 02.EB.05a 0gry-wht, pinkish 4 04.82 none
Dolomite 35.7E3 05.AB.10 0tlc, wht 3½ to 4 02.84 - 2.86 633 Cat
Dyscrasite 21.5E2 02.AA.35 0wht silver-wht 3½ to 4 09.71 22mm2 Cat
Fluorite 27.4E3 03.AB.25 9purple, tlc, brw 4 03.175 - 3.56 34/m 3 2/m Cat
Gypsum 35.0E3 07.CD.40 0tlc, wht 2 02.312 - 2.322 22/m Cat
Halite 27.4E2 03.AA.20 0tlc to red 02.168 34/m 3 2/m Cat
Kaolinite 32.9E3 09.ED.05 0wht to pale yll 2 to 2½ 02.63 11 Cat
Offretite 21.1E2 09.GD.25 0tlc, wht 4 to 4½ 02.13 666 m2 Cat
Siderite 34.7E3 05.AB.05 14yll-brw to gry-brw 3½ to 4½ 03.96 633 2/m Cat
Sulfur 31.5E3 01.CC.05 2yll, org tlc 1½ to 2½ 02.07 222/m 2/m 2/m Cat
Talc 32.2E3 09.EC.05 0tlc to brw 1 02.58 - 2.83 11 Cat

Db.- Identification of minerals (white streak, Mohs higher than 4) edit

  • Color: 0/ white (wht), translucent (tlc); 1/ grey, metallic (gry); 2/ yellow (yll); 3/ yellowish green (y-g); 4/ green (grn); 5/ bluish green (b-g); 6/ cyan (cyan); 7/ cyan-blue (c-b); 8/ blue (blue); 9/ violet (vlt); 10/ magenta (mgt); 11/ magenta-red (m-r); 12/ red (red); 13/ orange (org); 14/ brown, black grey (brw); 15/ black (blk); etc.
  • Crystal notation: 0/ amorphous; 1/ triclinic (Tri, point group 1 or 1); 2/ monoclinic (Mono, point group 2, m or 2/m); 22/ orthorhombic (Ortho, point group 222, mm2 or mmm); 4/ tetragonal (Tetra, point group 4...); 63/ hexagonal/trigonal (Trig, point group 3...); 66/ hexagonal/hexagonal (Hex, point group 6...); 3/ cubic or isometric (Iso, point group 23, m3, 432, 43m or m3m).
Mineral
name
# Strunz 10 ed
(Mindat)
Color
hue
Streak Mohs Density Point group  
Actinolite 32.4E3 09.DE.10 4grn to blk 5 to 6 03.03 - 3.24 22/m Cat
Aeschynite-(Y) 21.1E2 04.DF.05 2yll to org to red-yll 5 to 6 04.82 - 4.93 22/m 2/m 2/m Cat
Afghanite 12.4E1 09.FB.05 7l b to blue 5½ to 6 02.55 - 2.65 66Hex Cat
Alamosite 11.1E1 09.DO.20 0tlc to wht 06.49 22/m Cat
Albite 36.0E3 09.FA.35 0wht to gry 6 to 6½ 02.6 - 2.65 11 Cat
Alleghanyite 16.4E1 09.AF.45 10pnk to brw unk. 04 22/m Cat
Amblygonite 22.0E2 08.BB.05 0wht to gry 5½ to 6 03.04 - 3.11 11 Cat
Analcime 31.2E3 09.GB.05 0tlc to gry 5 to 5½ 02.24 - 2.29 11 Cat
Anatase 31.5E3 04.DD.05 14brw to trl wht to pale yll 5½ to 6 03.79 - 3.97 44/m 2/m 2/m Cat
Andalusite 29.7E2 09.AF.10 10pnk to brw 6½ - 7½ 03.13 - 3.21 222/m 2/m 2/m Cat
Andradite 31.2E3 09.AD.25 2yll to blk 6½ to 7 03.8 - 3.9 34/m 3 2/m Cat
Anorthite 26.8E2 09.FA.35 0tlc, gry, wht 6 to 6½ 02.74 - 2.76 11 Cat
Anorthoclase 21.5E2 09.FA.30 0wht, tlc, gry-pnk 6 to 6½ 02.57 - 2.6 11 Cat
Anthophyllite 24.9E2 09.DE.05 0wht, grn-gry, grn wht to gry-wht 5½ to 6 02.85 - 3.57 222/m 2/m 2/m Cat
Apophyllite-(KF) 22.9E2 09.EA.15 0tlc, grn, cyan 4½ to 5 02.33 - 2.37 44/m 2/m 2/m Cat
Augelite 16.7E1 08.BE.05 0wht, tlc, yll 4½ to 5 02.696 22/m Cat
Axinite-(Fe) 22.2E2 09.BD.20 0brown 6½ to 7 03.25 - 3.28 11 Cat
Brazilianite 15.0E1 08.BK.05 2yll to y-g 02.98 22/m Cat
Cassiterite 33.4E3 04.DB.05 15blk, yll, brw brw-wht, gry 6 to 7 06.98 - 7.01 44/m 2/m 2/m Cat
Chlorapatite 18.9E1 08.BN.05 0wht 5 03.1 - 3.2 666/m Cat
Cristobalite 22.7E2 04.DA.15 01blue gry, brw 6 to 7 02.32 - 2.36 44 2 2 Cat
Epidote 35.4E3 09.BG.05a 3y-g, blk tlc 6 03.38 - 3.49 22/m Cat
Fluorapatite 32.0E3 08.BN.05 0tlc, wht 5 03.1 - 3.25 666/m Cat
Hydroxylapatite 22.5E2 08.BN.05 0wht, gry, brw 5 03.14 - 3.21 666/m Cat
Lazulite 21.8E2 08.BB.40 8blue 5½ to 6 03.12 - 3.24 22/m Cat
Monazite-(Ce) 26.2E2 08.AD.50 0white 5 to 5½ 05 - 5.5 Cat
Okenite 16.0E1 09.EA.40 0wht to blue 4½ to 5 02.28 - 2.33 1Tri Cat
Omphacite 21.6E2 09.DA.20 4grn grn-wht 5 to 6 03.29 - 3.39 22/m Cat
Opal 32.5E3 04.DA.10 0tlc to brw 5½ to 6½ 01.9 - 2.3 none Cat
Orthoclase 31.7E3 09.FA.30 0tlc, wht, pnk 6 02.55 - 2.63 22/m Cat
Scheelite 33.9E3 07.GA.05 13tan, golden-yll 4½ to 5 06.1 44/m Cat
Sodalite 23.2E2 09.FB.10 0tlc to vlt 5½ to 6 02.73 34 3m Cat
Tridymite 23.0E2 04.DA.10 0tlc, wht 6½ to 7 02.25 - 2.28 11 Cat
Yugawaralite 13.4E1 09.GB.15 0tlc, wht, pnk 02.23 2m Cat
Zanazziite 11.2E1 08.DA.10 0pale to olive-grn 5 02.76 22/m Cat
Zoisite 27.3E2 09.BG.10 0tlc to vlt 6 to 7 03.15 - 3.36 222/m 2/m 2/m Cat

Rodinia edit

  • Torsvik, T.H. (30 May 2003). "The Rodinia Jigsaw Puzzle" (PDF). Science. 300 (5624): 1379–1381. doi:10.1126/science.1083469. PMID 12775828. S2CID 129275224.
  • Torsvik, T.H.; Gaina, C.; Redfield, T.F. (2008). "Antarctica and Global Paleogeography: From Rodinia, through Gondwanaland and Pangea, to the birth of the Southern Ocean and the opening of gateways" (PDF). In Cooper, A. K., P. J. Barrett, H. Stagg, B. Storey, E. Stump, W. Wise, and the 10th ISAES editorial team (ed.). Antarctica: A Keystone in a Changing World. Proceedings of the 10th International Symposium on Antarctic Earth Sciences. Washington, DC: The National Academies Press. pp. 125–140.{{cite book}}: CS1 maint: multiple names: editors list (link) CS1 maint: numeric names: editors list (link)
  • Meert, J.G.; Torsvik, T.H. (2003). "The making and unmaking of a Supercontinent: Rodinia revisited" (PDF). Tectonophysics. 375 (1–4): 261–288. doi:10.1016/S0040-1951(03)00342-1.
  • Bogdanova, S. V.; Pisarevsky, S. A.; Li, Z. X. (2009). "Assembly and Breakup of Rodinia (Some Results of IGCP Project 440)". Stratigraphy and Geological Correlation. 17 (3): 259–274. doi:10.1134/S0869593809030022. ISSN 0869-5938. S2CID 129254610.
  • Goodge, J. W.; Vervoort, J. D.; Fanning, C. M.; Brecke, D. M. (2008). "A positive test of East Antarctica–Laurentia Juxtaposition within the Rodinia supercontinent". Science. 321 (5886): 235–240. doi:10.1126/science.1159189. ISSN 0036-8075. PMID 18621666. S2CID 11799613. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  • Li, Z. X.; Bogdanova, S. V.; Collins, A. S.; Davidson, A. (2008). "Assembly, configuration, and break-up history of Rodinia: A synthesis". Precambrian Research. 160 (1–2): 179–210. doi:10.1016/j.precamres.2007.04.021. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  • Die SWEAT-Variante (von Southwest US – East Antantarctica) geht davon aus, dass sich die Antarktis südwestlich an Laurentia anschloss. Australien lag nördlich anschließend an die Antarktis.
  • Die AUSWUS-Variante (von Australien – western US) geht dagegen davon aus, dass Australien damals am Westrand von Laurentia lag. Die Antarktis lag in derselben Position an Australien wie in der SWEAT-Variante, hatte jedoch durch die weiter südliche Position von Australien keinen direkten Kontakt mit Laurentia.
  • In der AUSMEX-Variante (von Australien – Mexico) liegt Australien noch weiter südlich von Laurentia (relativ zur heutigen Lage Nordamerikas) und schloss etwa auf der Höhe Mexikos an Laurentia an.

Bogdanova et al. (2009) basierend auf Li et al. (2008) verwirft alle drei Varianten. Beide Arbeiten gehen von einer Rodinia-Konfiguration aus, bei der Südchina an der Westküste Laurentias lag. Teile Südamerikas schlossen an der Ostküste Laurentias an, nördlich davon folgte Baltica. Südlich Laurentias lagen verschiedene Blöcke des späteren Gondwana, nördlich Laurentias lagen Grönland und Sibirien. Die Positionen beziehen sich in etwa auf die Orientierung des heutigen Nordamerika. Dagegen betonen Goodge et al. (2008) wieder das SWEAT-Modell.

Literature of the K/T Controversy edit

Single cause edit

Multiple Causes edit

Chicxulub (diameter 10 km), Shiva crater (Iridium signal, diameter 40 km) and Deccan Traps

  • Archibald, J. David; Clemens, W. A.; Padian, Kevin; Rowe, Timothy (21 May 2010). "Cretaceous Extinctions: Evidence Overlooked". Science. 328 (5981): 973, author reply 975-6. doi:10.1126/science.328.5981.973-a. PMID 20489004. The list of 41 authors, although suggesting a consensus, conspicuously lacked the names of researchers in the fields of terrestrial vertebrates, including dinossaurs, as well as freshwater vertebrates and invertebrates {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  • Courtillot, Vincent; Fluteau, Frédéric (21 May 2010). "Cretaceous Extinctions: The Volcanic Hypothesis". Science. 328 (5981): 973–974. doi:10.1126/science.328.5981.973-b. PMID 20489003.
  • Keller, Gerta; Adatte, Thierry; Pardo, Alfonso; Bajpai, Sunil (21 May 2010). "Cretaceous Extinctions: Evidence Overlooked". Science. 328 (5981): 974–975. doi:10.1126/science.328.5981.974-a. PMID 20489005. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)

Gerta Keller Group edit

Vincent Courtillot edit

  • Anne-Lise Chenet Frédéric Fluteau Vincent Courtillot Martine Gérard K. V. Subbarao (2008). "Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment". Journal of Geophysical Research. 113 (B04101): 27. doi:10.1029/2006JB004635.
  • Anne-Lise Chenet, Xavier Quidelleur, Frédéric Fluteau, Vincent Courtillot and Sunil Bajpai (15 November 2007). "40K–40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration". Earth and Planetary Science Letters. 263 (1–2): 1–15. doi:10.1016/j.epsl.2007.07.011.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Anne-Lise Chenet Vincent Courtillot Frédéric Fluteau Martine Gérard Xavier Quidelleur S. F. R. Khadri K. V. Subbarao Thor Thordarson (2009). "Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section". Journal of Geophysical Research. 114 (B06103): 38. doi:10.1029/2008JB005644.
  • Vincent Courtillot, Jean Besse, Didier Vandamme, Raymond Montigny, Jean-Jacques Jaeger and Henri Cappetta (November 1986). "Deccan flood basalts at the Cretaceous/Tertiary boundary?". Earth and Planetary Science Letters. 80 (3–4): 361–374. doi:10.1016/0012-821X(86)90118-4.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  • Courtillot, V. (1994). "Mass extinctions in the last 300 million years: One impact and seven flood basalts?". Israel Journal of Earth Sciences. 43: 255–266.
  • Courtillot, Vincent (1999). Evolutionary Catastrophes: the Science of Mass Extinction. Joe McClinton. Cambridge: Cambridge University Press. ISBN 0521583926.
  • Vincent E. Courtillot and Paul R. Renne (January 2003). "On the ages of flood basalt events". Comptes Rendus Geosciences. 335 (1): 113–140. doi:10.1016/S1631-0713(03)00006-3.{{cite journal}}: CS1 maint: date and year (link)
  • V. Courtillot, Y. Gallet, R. Rocchia, G. Féraud, E. Robin, C. Hofmann, N. Bhandari and Z. G. Ghevariya (30 October 2000). "Cosmic markers, 40Ar/39Ar dating and paleomagnetism of the KT sections in the Anjar Area of the Deccan large igneous province". Earth and Planetary Science Letters. 182 (2): 137–156. doi:10.1016/S0012-821X(00)00238-7.{{cite journal}}: CS1 maint: multiple names: authors list (link)

Others edit

  • Michael L. Prauss (10 December 2009). "The K/Pg boundary at Brazos-River, Texas, USA — An approach by marine palynology". Palaeogeography, Palaeoclimatology, Palaeoecology. 283 (3–4): 195–215. doi:10.1016/j.palaeo.2009.09.024.
  • Paul M. Barrett, Alistair J. McGowan, and Victoria Page (22 July 2009). "Dinosaur diversity and the rock record". Proc. R. Soc. B. 276 (1667): 2667–2674. doi:10.1098/rspb.2009.0352. PMC 2686664. PMID 19403535.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Nan Crystal Arens and Ian D. West (November 2008). "Press-pulse: a general theory of mass extinction?". Paleobiology. 34 (4): 456–471. doi:10.1666/07034.1. S2CID 56118514.{{cite journal}}: CS1 maint: date and year (link)
  • Shanan E. Peters (31 July 2008). "Environmental determinants of extinction selectivity in the fossil record". Nature. 454 (7204): 626–629. doi:10.1038/nature07032. PMID 18552839. S2CID 205213600.
  • Stephen Self, Mike Widdowson, Thorvaldur Thordarson and Anne. E. Jay (15 August 2006). "Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective". Earth and Planetary Science Letters. 248 (1–2): 518–532. doi:10.1016/j.epsl.2006.05.041.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Gregory P Wilson (2005). "Mammalian faunal dynamics during the last 1.8 million years of the Cretaceous in Garfield County, Montana". Journal of Mammalian Evolution. 12 (1–2): 53–76. doi:10.1007/s10914-005-6943-4. S2CID 34157027.
  • David, Archibald (2004). "Dinosaur Extinction" (PDF). In Weishampel David B, Dodson Peter, Osmólska Halszka (eds.) (ed.). The Dinosauria (2nd ed.). Berkeley: University of California Press. pp. 672–684. ISBN 0-520-24209-2. {{cite book}}: |editor= has generic name (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: multiple names: editors list (link)
  • MacLeod, N. (2003). "The causes of Phanerozoic extinctions". In LJ Rothschild and AM Lister (ed.). Evolution on Planet Earth. Academic Press. pp. 253–277.
  • C. Wylie Poag, Jeffrey B. Plescia and Phillip C. Molzer (2002). "Ancient impact structures on modern continental shelves: The Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America". Deep Sea Research Part II: Topical Studies in Oceanography. 49 (6): 1081–1102. doi:10.1016/S0967-0645(01)00144-8.
  • P. B. Wignall (March 2001). "Large igneous provinces and mass extinctions". Earth-Science Reviews. 53 (1–2): 1–33. doi:10.1016/S0012-8252(00)00037-4. Comparing the timing of mass extinctions with the formation age of large igneous provinces reveals a close correspondence in five cases, but previous claims that all such provinces coincide with extinction events are unduly optimistic. The best correlation occurs for four consecutive mid-Phanerozoic examples, namely the end-Guadalupian extinction/Emeishan flood basalts, the end-Permian extinction/Siberian Traps, the end-Triassic extinction/central Atlantic volcanism and the early Toarcian extinction/Karoo Traps. Curiously, the onset of eruptions slightly post-dates the main phase of extinctions in these examples. Of the seven post-Karoo provinces, only the Deccan Traps coincide with a mass extinction, but in this case, the nature of the biotic crisis is best reconciled with the effects of a major bolide impact. Intraoceanic volcanism may also be implicated in a relatively minor end-Cenomanian extinction crisis, although once again the main phase of volcanism occurs after the crisis.{{cite journal}}: CS1 maint: date and year (link)
  • N. MacLeod, P. F. Rawson, P. L. Forey, F. T. Banner, M. K. Boudagher-Fadel, P. R. Bown, J. A. Burnett, P. Chambers, S. Culver, S. E. Evans, C. Jeffery, M. A. Kaminski, A. R. Lord, A. C. Milner, A. R. Milner, N. Morris, E. Owen, B. R. Rosen, A. B. Smith, P. D. Taylor, E. Urquhart and J. R. Young (April 1997). "The Cretaceous-Tertiary biotic transition". Journal of the Geological Society. 154 (2): 265–292. doi:10.1144/gsjgs.154.2.0265. S2CID 129654916.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  • Bhandari, N., P. N. Shukla, Z. G. Ghevariya, and S. M. Sundaram (1995). "Impact did not trigger Deccan volcanism: Evidence from Anjar K/T Boundary intertrappean sediments". Geophysical Research Letters. 22 (4): 433–436. doi:10.1029/94GL03271.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Rampino, Michael R.; Stothers, Richard B. (5 Aug 1988). "Flood Basalt Volcanism During the Past 250 Million Years". Science. 241 (4866): 663–668. doi:10.1126/science.241.4866.663. PMID 17839077. S2CID 33327812.

Sankar Chatterjee edit

Hotspots edit

  • Segev, A (2002). "Flood basalts, continental breakup and the dispersal of Gondwana: evidence for periodic migration of upwelling mantle flows (plumes)" (PDF). EGU Stephan Mueller Special Publication Series. 2: 171–191. doi:10.5194/smsps-2-171-2002. Retrieved 5 August 2010.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • The largest flood basalt events mark the earliest volcanic activity of many major hot spots
  • Simultaneous generation of hotspots and superswells by convection
  • As shown by seismic structure of slabs, the subducting plates cross the 660 km discontinuity and sink down toward the core mantle boundary (CMB) (van der Hilst and Seno, 1993; van der Hilst et al., 1997; Bijwaard and Spakman, 1998). Such a process causes significant instability at the 660 km depth seismic discontinuity and also close to the CMB. Models of convection showed that new plumes might form as a result of boundary layer instabilities (Whitehead and Chen, 1970; Dubuffet et al., 2000).
  • It is likely that large mantle plumes ascending from a thermal layer just above the core-mantle boundary (c. 2800 km) are a result of lower mantle upwelling (Olson et al., 1990; Griffiths and Campbell, 1990). Griffiths and Campbell’s (1990) model predicts that such plume heads attain a diameter of 800–1200 km.
  • A common view of lower mantle upwelling is that it has the capacity to generate large quantities of basaltic magma (White and McKenzie, 1989; Campbell and Griffiths, 1990; Duncan and Richards, 1991; Schilling et al., 1992; Lanyon et al., 1993; Weaver et al., 1994; Coffin and Eldholm, 1994; Wilson and Guiraud, 1998) generally as continental flood volcanics (CFV) or flood basalts (FB), and oceanic plateaus.
    • "Magmatism at rift zones: The generation of volcanic continental margins and flood basalts". J. Geophys. Res. 94: 7685–7729. 1989. doi:10.1029/JB094iB06p07685. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
    • "Hotspots, mantle plumes, flood basalts, and true polar wander". Rev. Geophys. 29: 31–50. 1991. doi:10.1029/90RG02372. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
    • "Nd-Sr-Pb isotopic variations along the Golf of Aden: Evidence for Afar mantle plume-continental lithosphere interaction". J. Geophys. Res. 97 (B7): 10 927–10 966. 1992. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
    • "Tasmanian Tertiary basalts, the Balleny plume, and opening of the Tasman Sea (southwest Pacific Ocean)". Geology. 21 (6): 555–558. 1993. doi:10.1130/0091-7613(1993)021<0555:TTBTBP>2.3.CO;2. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
    • "Antarctica – New Zealand rifting and Marie Byrd Land lithospheric magmatism linked to ridge subduction and mantle plume activity". Geology. 22 (9): 811–814. 1994. doi:10.1130/0091-7613(1994)022<0811:ANZRAM>2.3.CO;2. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
    • "Large igneous provinces: Crustal structure, dimensions, and external consequences". Rev. Geophys. 32: 1–36. 1994. doi:10.1029/93RG02508. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
    • "Magmatism and rifting in Western and Central Africa, from Late Jurassic to Recent times". Tectonophys. 213 (1–2): 203–225. 1992. doi:10.1016/0040-1951(92)90259-9. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  • Since Morgan (1971), the role of lower mantle upwelling in continental breakup has been discussed by many investigators (e.g. Storey, 1995; Courtillot et al., 1999; Hawkesworth et al., 1999; Segev, 2000).

Mantle plumes edit

Jack Sepkoski and David M. Raup edit

Jack Sepkoski and David M. Raup

The classical "Big Five" mass extinctions: End Ordovician, Late Devonian, End Permian, End Triassic (ETE), and End Cretaceous (K/T).

  • Raup, D. & Sepkoski, J. (1982). "Mass extinctions in the marine fossil record". Science. 215 (4539): 1501–1503. doi:10.1126/science.215.4539.1501. PMID 17788674. S2CID 43002817.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Rohde, R.A. & Muller, R.A. (2005). "Cycles in fossil diversity". Nature. 434 (7030): 209–210. doi:10.1038/nature03339. PMID 15758998. S2CID 32520208.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Sepkoski, J. (2002) A Compendium of Fossil Marine Animal Genera (eds. Jablonski, D. & Foote, M.) Bull. Am. Paleontol. no. 363 (Paleontological Research Institution, Ithaca, NY).
  • Signor, P. and J. Lipps (1982) "Sampling bias, gradual extinction patterns and catastrophes in the fossil record", in Geologic Implications of Impacts of Large Asteroids and Comets on the Earth, I. Silver and P. Silver Eds, Geol. Soc. Amer. Special Paper 190, Boulder Colo. p. 291-296.
  • Sepkoski, J.J., Jr., 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology, v. 363, p. 1–560.
  • Gradstein, F.M., and Ogg, J.G., 2004. Geologic Time Scale 2004 - why, how, and where next? Lethaia, v. 37, p. 175–181. [absolute dates]
  • Okulitch, A.V., 1999. Geological Time Chart. GSC Open File 3040, supplement to Geolog, v. 29. [absolute dates]
  • Sepkoski, J.J., Jr., 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, v. 7, p. 36–53. [classic paper using family database]
  • Sepkoski, J.J., Jr., 1982. A compendium of fossil marine families. Milwaukee Public Museum Contribution to Biology and Geology, No. 51. [family dataset]
  • Sepkoski, J.J., Jr., 1992. A compendium of fossil marine families, 2nd Ed. Milwaukee Public Museum Contribution to Biology and Geology, No. 83. [family dataset, revisited]
  • Tapanila, L., 2006. Using FossilPlot graphing software to complement lecture, lab and field teaching of paleontology: GSA Abstracts with Programs, v. 38(7), p. 499.
  • Tapanila, L., 2007. FossilPlot, an Excel-based computer application for teaching stratigraphic paleontology using the Sepkoski Compendium of fossil marine genera: Journal of Geoscience Education, 55(2):133-137.
  • Phipps Morgan, J., T. J. Reston, and C. R. Ranero, Contemporaneous mass extinctions, continental flood basalts, and 'impact signals': are mantle plume-induced lithospheric gas explosions the causal link?, Earth Planet. Sci. Lett., 217, 263-284, 2004.

Michael R. Rampino edit

The Shiva hypothesis edit

See also edit