User:A. T. Galenitis/sandbox/Cerium(III) sulfide

Cerium(III) sulfide
Names
IUPAC name
Cerium(III) sulfide
Other names
  • Cerium sulfide
  • Cerium sesquisulfide
  • Cerous sulfide
  • Dicerium trisulfide
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 234-603-7234-603-7
  • InChI=1S/2Ce.3S/q2*+3;3*-2
    Key: MMXSKTNPRXHINM-UHFFFAOYSA-N
  • [S-2].[S-2].[S-2].[Ce+3].[Ce+3]
Properties
Ce2S3
Molar mass 375.73 g/mol
Appearance Red/burgundy/black crystals (depending on polymorph)
Density 5.18 g/cm3
Melting point 1,840 to 1,940 °C (3,340 to 3,520 °F; 2,110 to 2,210 K)
insoluble
Solubility soluble in warm formic or acetic acid
soluble in cold dil. HCl, HNO3 or H2SO4
Band gap 2.06 eV (γ-Ce2S3)
2.77 (589 nm)
Structure
orthorhombic (α-Ce2S3)
tetragonal (β-Ce2S3)
cubic (γ-Ce2S3)
Thermochemistry
126.2 J·mol−1·K−1
-1260 kJ·mol−1
-1230 kJ·mol−1
Hazards
GHS labelling:
GHS07: Exclamation mark
Warning
H315, H319, H335
P261, P280, P305+P351+P338
Flash point Non-flammable
Related compounds
Other anions
Cerium(III) oxide
Other cations
Samarium(III) sulfide, Praseodymium(III) sulfide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cerium(III) sulfide, also known as cerium sesquisulfide, is an inorganic compound with the formula Ce2S3. It is the sulfide salt of cerium(III) and exists as three polymorphs with different crystal structures.[1][2][3]

Its high melting point (comparable to silica or alumina) and chemically inert nature have led to occasional examination of potential use as a refractory material for crucibles, but it has never been widely adopted for this application.[2]

The distinctive red colour of two of the polymorphs (α- and β-Ce2S3) and aforementioned chemical stability up to high temperatures have led to some limited commercial use as a red pigment.[3]

Synthesis

edit

The oldest syntheses reported for the of cerium(III) sulfide follow a typical rare earth sesquisulfide formation route, which involves heating the corresponding cerium sesquioxide to 900–1100 °C in an atmosphere of hydrogen sulfide:[1]

Ce2O3 + 3 H2S → Ce2S3 + 3 H2O

Newer synthetic procedures utilise less toxic carbon disulfide gas for sulfurisation, starting from cerium dioxide which is reduced by the CS2 gas at temperatures of 800–1000 °C:[2]

6 CeO2 + 5 CS2 → 3 Ce2S3 + 5 CO2 + SO2

Polymorphs

edit

Ce2S3 exists in three polymorphic forms: α-Ce2S3 (orthorhombic, burgundy colour), β-Ce2S3 (tetragonal, red colour), γ-Ce2S3 (cubic, black colour).[1][2][3] They are analogous to the crystal structures of the likewise trimorphic Pr2S3 and Nd2S3.[2]

Following the synthetic procedures given above will yield mostly the α- and β- polymorphs, with the proportion of α-Ce2S3 increasing at lower temperatures (~700–900 °C) and with longer reaction times.[2][3] The α- form can be irreversibly transformed into β-Ce2S3 by vacuum heating at 1200 °C for 7 hours. Then γ-Ce2S3 is obtained from sintering of β-Ce2S3 powder via hot pressing at an even higher temperature (1700 °C).[2]

Applications

edit

Refractory material

edit

Cerium(III) and cerium(IV) sulfides were first investigated in the 1940s as part of the Manhattan project, where they were considered -but eventually not adopted- as advanced refractory materials.[2] Their suggested application was as the material in crucibles for the casting of uranium and plutonium metal.[2]

Although the sulfide's properties (high melting point and large, negative Δf i.e. chemical inertness) are suitable and cerium is a relatively common element (66 ppm, about as much as copper), the danger of the traditional H2S-involving production route and the difficulty in controlling the formation of the resulting Ce2S3/CeS solid mixture meant that the compound was ultimately not developed further for such applications.[2]

Pigment and other uses

edit

The main non-research use of cerium(III) sulfide is as a specialty inorganic pigment.[3] The strong red hues of α- and β-Ce2S3, non-prohibitive cost of cerium, and chemically inert behaviour up to high temperature are the factors which make the compound desirable as a pigment.

Regarding other applications, the γ-Ce2S3 polymorph has a band gap of 2.06 eV and high Seeback coefficient, thus it has been proposed as a high-temperature semiconductor for thermoelectric generators.[2] A practical implementation has not been demonstrated so far.

References

edit
  1. ^ a b c Banks, E.; Stripp, K. F.; Newkirk, H. W.; Ward, R. (1952). "Cerium(III) Sulfide and Selenide and Some of their Solid Solutions1". Journal of the American Chemical Society. 74 (10): 2450–2453. doi:10.1021/ja01130a002. ISSN 0002-7863.
  2. ^ a b c d e f g h i j k Hirai, Shinji; Shimakage, Kazuyoshi; Saitou, Yasushi; Nishimura, Toshiyuki; Uemura, Yoichiro; Mitomo, Mamoru; Brewer, Leo (1998). "Synthesis and Sintering of Cerium(III) Sulfide Powders". Journal of the American Ceramic Society. 81 (1): 145–151. doi:10.1111/j.1151-2916.1998.tb02306.x. ISSN 1551-2916.
  3. ^ a b c d e Kariper, I. A. (2014). "Synthesis and characterization of cerium sulfide thin film". Progress in Natural Science: Materials International. 24 (6). Elsevier: 663–670. doi:10.1016/j.pnsc.2014.10.005. ISSN 1002-0071.