Draft:Disorders of diminished motivation

Disorders of diminished motivation (DDM) is an umbrella term referring to a group of psychiatric and neurological disorders involving diminished capacity for motivation, will, and affect.[1][2][3][4]

A multitude of terms have been used to refer to DDM of varying severities and varieties, including apathy, abulia, akinetic mutism, athymhormia, avolition, amotivation, anhedonia, psychomotor retardation, and psychic akinesia (auto-activation deficit or loss of psychic self-activation), among others.[4][1][2][3][5][6] Other constructs, like fatigue, lethargy, and anergia, also overlap with the concept of DDM.[6][2][7][4]

Often however, a spectrum of DDM is defined encompassing apathy, abulia, and akinetic mutism, with apathy being the mildest form and akinetic mutism being the most severe or extreme form.[1][2][3] Akinetic mutism involves complete inability to move or speak due to absence of will.[1][2][3]

Causes

edit

Less extreme forms of DDM, for instance apathy or anhedonia, can be a symptom of psychiatric disorders and related conditions, like depression, schizophrenia, or drug withdrawal.[4][3][1][5] More extreme forms of DDM, for instance severe apathy, abulia, or akinetic mutism, can be a result of traumatic brain injury (TBI), stroke, or neurodegenerative diseases like dementia or Parkinson's disease.[4][1][2][3][5]

Reduction in motivation and affect can also be induced by certain drugs, such as dopamine receptor antagonists like antipsychotics (e.g., haloperidol) and ecopipam,[4][8] dopamine-depleting agents like tetrabenazine,[8] dopaminergic neurotoxins like oxidopamine (6-hydroxydopamine; 6-OHDA),[4] serotonergic antidepressants like the selective serotonin reuptake inhibitors (SSRIs),[9][10][11] and cannabis or cannabinoids.[12][13][14]

Damage to a variety of brain areas have been implicated in DDM.[3] However, damage to or reduced functioning of the anterior cingulate cortex (ACC) and striatum have been especially implicated in DDM.[3][15][4] The striatum is part of the dopaminergic mesolimbic pathway, which connects the ventral tegmental area (VTA) of the midbrain to the nucleus accumbens (NAc) of the ventral striatum and basal ganglia.[3][15][4] Strokes affecting other striatal and basal ganglia structures, like the caudate nucleus of the dorsal striatum, have also been associated with DDM.[16][3][17]

Treatment

edit

DDM, like abulia and akinetic mutism, can be treated with dopaminergic and other activating medications.[1][2][3][8] These include psychostimulants and releasers or reuptake inhibitors of dopamine and/or norepinephrine like amphetamine, methylphenidate, bupropion, modafinil, and atomoxetine; D2-like dopamine receptor agonists like pramipexole, ropinirole, rotigotine, piribedil, bromocriptine, cabergoline, and pergolide; the dopamine precursor levodopa; and monoamine oxidase inhibitors (MAOIs) like selegiline and rasagiline, among others.[1][2][3][8][4] Selegiline is also a catecholaminergic activity enhancer (CAE), and this may additionally or alternatively be involved in its possible pro-motivational effects.[18][19]

Centrally acting D1-like dopamine receptor agonists and positive modulators, like mevidalen (LY-3154207), tavapadon (CVL-751, PF-06649751), and razpipadon (CVL-871), are also under development for medical use, including treatment of dementia-related apathy.[20][21][22] Centrally active catechol-O-methyltransferase inhibitors (COMTIs) like tolcapone have been studied in the treatment of psychiatric disorders but not in the treatment of DDM.[23]

Besides DDM, psychostimulants and related agents have been used non-medically to enhance motivation in healthy people, for instance in academic contexts.[24][8] This has provoked discussions on the ethics of such uses.[24][8]

Preclinical and clinical data on the effectiveness of drugs in enhancing motivation and treating DDM has been reviewed.[8][4]

A limitation of medications used to improve motivation, like psychostimulants, is development of tolerance to their effects.[25][26] Rapid acute tolerance to amphetamines is believed to be responsible for the dissociation between their relatively short durations of action (~4 hours for main effects) and their much longer elimination half-lives (~10 hours) and durations in the body (~2 days).[26][27][28][29][30][31][32] It appears that continually increasing or ascending concentration–time curves are beneficial for prolonging effects, which has resulted in administration multiple times per day and development of delayed- and extended-release formulations.[26][28][29] Medication holidays and breaks can be helpful in resetting tolerance.[25]

Besides medications, various psychological and physiological processes, including arousal,[33] mood,[34][35][36][37][38] expectancy effects (e.g., placebo),[39][40] novelty,[41][42] psychological stress or urgency,[43][44][33] rewarding and aversive stimuli,[33] addiction,[45] and sleep amount,[46] among others, can also context- and/or stimulus-dependently modulate or enhance brain dopamine signaling and motivation to varying degrees.

edit

DDM should not be confused with "motivational deficiency disorder" ("MoDeD"; "extreme laziness"), a fake or spoof disease created for humorous purposes in 2006 to raise awareness about disease mongering, overdiagnosis, and medicalization.[47][48]

On the other hand, attention deficit hyperactivity disorder (ADHD) often involves motivational deficits, and the ADHD academic Russell Barkley has referred to the condition as a "motivational deficit disorder" in various publications and presentations.[49][50][51][52][53] However, ADHD has perhaps more accurately been conceptualized as a disorder of executive function and of directing or allocating attention and motivation rather than a global deficiency in these processes.[49][54][55] People with ADHD are often highly motivated towards stimuli that interest them, not uncommonly experiencing a flow-like state called hyperfocus while engaging such stimuli.[56][49] In any case, as with management of DDM, psychostimulants and other catecholaminergic agents are used in people with ADHD to treat their symptoms, including difficulties with attention, executive control, and motivation.[57][58][59] Amphetamines in the treatment of ADHD appear to have among the largest effect sizes in terms of effectiveness of any interventions (medications or forms of psychotherapy) used in the management of psychiatric disorders generally.[60]

References

edit
  1. ^ a b c d e f g h Marin RS, Wilkosz PA (2005). "Disorders of diminished motivation". J Head Trauma Rehabil. 20 (4): 377–388. doi:10.1097/00001199-200507000-00009. PMID 16030444.
  2. ^ a b c d e f g h Spiegel DR, Warren A, Takakura W, Servidio L, Leu N (January 2018). "Disorders of diminished motivation: What they are, and how to treat them" (PDF). Current Psychiatry. 17 (1): 10–18, 20.
  3. ^ a b c d e f g h i j k l Arnts H, van Erp WS, Lavrijsen JC, van Gaal S, Groenewegen HJ, van den Munckhof P (May 2020). "On the pathophysiology and treatment of akinetic mutism". Neurosci Biobehav Rev. 112: 270–278. doi:10.1016/j.neubiorev.2020.02.006. hdl:2066/225901. PMID 32044373.
  4. ^ a b c d e f g h i j k Chong TT, Husain M (2016). "The role of dopamine in the pathophysiology and treatment of apathy". Motivation: Theory, Neurobiology and Applications. Progress in Brain Research. Vol. 229. pp. 389–426. doi:10.1016/bs.pbr.2016.05.007. ISBN 978-0-444-63701-7. PMID 27926449.
  5. ^ a b c Thant T, Yager J (September 2019). "Updating Apathy: Using Research Domain Criteria to Inform Clinical Assessment and Diagnosis of Disorders of Motivation". J Nerv Ment Dis. 207 (9): 707–714. doi:10.1097/NMD.0000000000000860. PMID 30256334.
  6. ^ a b Batail, J.M.; Palaric, J.; Guillery, M.; Gadoullet, J.; Sauleau, P.; Le Jeune, F.; Vérin, M.; Robert, G.; Drapier, D. (2018). "Apathy and depression: Which clinical specificities?". Personalized Medicine in Psychiatry. 7–8: 21–26. doi:10.1016/j.pmip.2017.12.001.
  7. ^ Boksem MA, Tops M (November 2008). "Mental fatigue: costs and benefits" (PDF). Brain Res Rev. 59 (1): 125–139. doi:10.1016/j.brainresrev.2008.07.001. PMID 18652844.
  8. ^ a b c d e f g Hailwood JM (27 September 2018). Novel Approaches Towards Pharmacological Enhancement of Motivation (Thesis). University of Cambridge. doi:10.17863/CAM.40216.
  9. ^ Jawad MY, Fatima M, Hassan U, Zaheer Z, Ayyan M, Ehsan M, Khan MH, Qadeer A, Gull AR, Asif MT, Shad MU (July 2023). "Can antidepressant use be associated with emotional blunting in a subset of patients with depression? A scoping review of available literature". Hum Psychopharmacol. 38 (4): e2871. doi:10.1002/hup.2871. PMID 37184083.
  10. ^ Masdrakis VG, Markianos M, Baldwin DS (August 2023). "Apathy associated with antidepressant drugs: a systematic review". Acta Neuropsychiatr. 35 (4): 189–204. doi:10.1017/neu.2023.6. PMID 36644883.
  11. ^ Camino S, Strejilevich SA, Godoy A, Smith J, Szmulewicz A (July 2023). "Are all antidepressants the same? The consumer has a point". Psychol Med. 53 (9): 4004–4011. doi:10.1017/S0033291722000678. PMID 35346413.
  12. ^ Skumlien M, Langley C, Lawn W, Voon V, Curran HV, Roiser JP, Sahakian BJ (November 2021). "The acute and non-acute effects of cannabis on reward processing: A systematic review". Neurosci Biobehav Rev. 130: 512–528. doi:10.1016/j.neubiorev.2021.09.008. PMID 34509513.
  13. ^ Pacheco-Colón I, Limia JM, Gonzalez R (August 2018). "Nonacute effects of cannabis use on motivation and reward sensitivity in humans: A systematic review". Psychol Addict Behav. 32 (5): 497–507. doi:10.1037/adb0000380. PMC 6062456. PMID 29963875.
  14. ^ Skumlien, Martine; Langley, Christelle; Sahakian, Barbara J. (19 December 2023). "Is Cannabis Use Associated with Motivation? A Review of Recent Acute and Non-Acute Studies". Current Behavioral Neuroscience Reports. 11: 33–43. doi:10.1007/s40473-023-00268-1. ISSN 2196-2979.
  15. ^ a b Lázaro-Perlado, Fernando (13 September 2019). "Apathy: A Conceptual Review". Current Psychiatry Research and Reviews. 15 (2): 88–104. doi:10.2174/1573400515666190306150306.
  16. ^ Bhatia KP, Marsden CD (August 1994). "The behavioural and motor consequences of focal lesions of the basal ganglia in man". Brain. 117 ( Pt 4) (4): 859–876. doi:10.1093/brain/117.4.859. PMID 7922471.
  17. ^ Chung, Chin-Sang; Caplan, Louis R. (2012-07-12). "Caudate nucleus infarcts and hemorrhages". In Caplan, Louis R.; van Gijn, Jan (eds.). Stroke syndromes (3 ed.). Cambridge: Cambridge University Press. pp. 397–404. doi:10.1017/cbo9781139093286.034. ISBN 978-1-139-09328-6.
  18. ^ Knoll J (2001). "Antiaging compounds: (-)deprenyl (selegeline) and (-)1-(benzofuran-2-yl)-2-propylaminopentane, [(-)BPAP], a selective highly potent enhancer of the impulse propagation mediated release of catecholamine and serotonin in the brain". CNS Drug Rev. 7 (3): 317–345. doi:10.1111/j.1527-3458.2001.tb00202.x. PMC 6494119. PMID 11607046.
  19. ^ Knoll J (August 2003). "Enhancer regulation/endogenous and synthetic enhancer compounds: a neurochemical concept of the innate and acquired drives". Neurochem Res. 28 (8): 1275–1297. doi:10.1023/a:1024224311289. PMID 12834268.
  20. ^ Jones-Tabah J, Mohammad H, Paulus EG, Clarke PB, Hébert TE (2021). "The Signaling and Pharmacology of the Dopamine D1 Receptor". Front Cell Neurosci. 15: 806618. doi:10.3389/fncel.2021.806618. PMC 8801442. PMID 35110997.
  21. ^ Wang HJ, Chinna-Meyyappan A, Feldman OJ, Lanctôt KL (June 2024). "Emerging therapies for treatment of agitation, psychosis, or apathy in Alzheimer's disease". Expert Opin Emerg Drugs: 1–15. doi:10.1080/14728214.2024.2363215. PMID 38822731.
  22. ^ Dolphin H, Dyer AH, McHale C, O'Dowd S, Kennelly SP (July 2023). "An Update on Apathy in Alzheimer's Disease". Geriatrics (Basel). 8 (4): 75. doi:10.3390/geriatrics8040075. PMC 10366907. PMID 37489323.
  23. ^ Kings E, Ioannidis K, Grant JE, Chamberlain SR (June 2024). "A systematic review of the cognitive effects of the COMT inhibitor, tolcapone, in adult humans". CNS Spectr. 29 (3): 166–175. doi:10.1017/S1092852924000130. PMID 38487834.
  24. ^ a b Kjærsgaard, Torben (2 January 2015). "Enhancing Motivation by Use of Prescription Stimulants: The Ethics of Motivation Enhancement". AJOB Neuroscience. 6 (1): 4–10. doi:10.1080/21507740.2014.990543. ISSN 2150-7740.
  25. ^ a b Handelman K, Sumiya F (July 2022). "Tolerance to Stimulant Medication for Attention Deficit Hyperactivity Disorder: Literature Review and Case Report". Brain Sci. 12 (8): 959. doi:10.3390/brainsci12080959. PMC 9332474. PMID 35892400.
  26. ^ a b c Ermer JC, Pennick M, Frick G (May 2016). "Lisdexamfetamine Dimesylate: Prodrug Delivery, Amphetamine Exposure and Duration of Efficacy". Clin Drug Investig. 36 (5): 341–356. doi:10.1007/s40261-015-0354-y. PMC 4823324. PMID 27021968.
  27. ^ Cruickshank CC, Dyer KR (July 2009). "A review of the clinical pharmacology of methamphetamine". Addiction. 104 (7): 1085–1099. doi:10.1111/j.1360-0443.2009.02564.x. PMID 19426289. Metabolism does not appear to be altered by chronic exposure, thus dose escalation appears to arise from pharmacodynamic rather than pharmacokinetic tolerance [24]. [...] The terminal plasma half-life of methamphetamine of approximately 10 hours is similar across administration routes, but with substantial inter-individual variability. Acute effects persist for up to 8 hours following a single moderate dose of 30 mg [30]. [...] peak plasma methamphetamine concentration occurs after 4 hours [35]. Nevertheless, peak cardiovascular and subjective effects occur rapidly (within 5–15 minutes). The dissociation between peak plasma concentration and clinical effects indicates acute tolerance, which may reflect rapid molecular processes such as redistribution of vesicular monoamines and internalization of monoamine receptors and transporters [6,36]. Acute subjective effects diminish over 4 hours, while cardiovascular effects tend to remain elevated. This is important, as the marked acute tachyphylaxis to subjective effects may drive repeated use within intervals of 4 hours, while cardiovascular risks may increase [11,35].
  28. ^ a b Abbas K, Barnhardt EW, Nash PL, Streng M, Coury DL (April 2024). "A review of amphetamine extended release once-daily options for the management of attention-deficit hyperactivity disorder". Expert Rev Neurother. 24 (4): 421–432. doi:10.1080/14737175.2024.2321921. PMID 38391788. For several decades, clinical benefits of amphetamines have been limited by the pharmacologic half-life of around 4 hours. Although higher doses can produce higher maximum concentrations, they do not affect the half-life of the dose. Therefore, to achieve longer durations of effect, stimulants had to be dosed at least twice daily. Further, these immediate-release doses were found to have their greatest effect shortly after administration, with a rapid decline in effect after reaching peak blood concentrations. The clinical correlation of this was found in comparing math problems attempted and solved between a mixed amphetamine salts preparation (MAS) 10 mg once at 8 am vs 8 am followed by 12 pm [14]. The study also demonstrated the phenomenon of acute tolerance, where even if blood concentrations were maintained over the course of the day, clinical efficacy in the form of math problems attempted and solved would diminish over the course of the day. These findings eventually led to the development of a once daily preparation (MAS XR) [15], which is a composition of 50% immediate-release beads and 50% delayed release beads intended to mimic this twice-daily dosing with only a single administration.
  29. ^ a b Swanson JM, Volkow ND (January 2009). "Psychopharmacology: concepts and opinions about the use of stimulant medications". J Child Psychol Psychiatry. 50 (1–2): 180–93. doi:10.1111/j.1469-7610.2008.02062.x. PMC 2681087. PMID 19220601.
  30. ^ Dolder PC, Strajhar P, Vizeli P, Hammann F, Odermatt A, Liechti ME (2017). "Pharmacokinetics and Pharmacodynamics of Lisdexamfetamine Compared with D-Amphetamine in Healthy Subjects". Front Pharmacol. 8: 617. doi:10.3389/fphar.2017.00617. PMC 5594082. PMID 28936175.
  31. ^ Folgering JH, Choi M, Schlumbohm C, van Gaalen MM, Stratford RE (April 2019). "Development of a non-human primate model to support CNS translational research: Demonstration with D-amphetamine exposure and dopamine response". J Neurosci Methods. 317: 71–81. doi:10.1016/j.jneumeth.2019.02.005. PMID 30768951.
  32. ^ van Gaalen, Marcel M.; Schlumbohm, Christina; Folgering, Joost H.; Adhikari, Saugat; Bhattacharya, Chandrali; Steinbach, Douglas; Stratford, Robert E. (2019). "Development of a Semimechanistic Pharmacokinetic-Pharmacodynamic Model Describing Dextroamphetamine Exposure and Striatal Dopamine Response in Rats and Nonhuman Primates following a Single Dose of Dextroamphetamine". Journal of Pharmacology and Experimental Therapeutics. 369 (1): 107–120. doi:10.1124/jpet.118.254508. ISSN 0022-3565. PMID 30733244.
  33. ^ a b c Bandhu D, Mohan MM, Nittala NA, Jadhav P, Bhadauria A, Saxena KK (April 2024). "Theories of motivation: A comprehensive analysis of human behavior drivers". Acta Psychol (Amst). 244: 104177. doi:10.1016/j.actpsy.2024.104177. PMID 38354564.
  34. ^ Allen NB, Badcock PB (July 2006). "Darwinian models of depression: a review of evolutionary accounts of mood and mood disorders". Prog Neuropsychopharmacol Biol Psychiatry. 30 (5): 815–826. doi:10.1016/j.pnpbp.2006.01.007. PMID 16647176.
  35. ^ Nettle D, Bateson M (September 2012). "The evolutionary origins of mood and its disorders". Curr Biol. 22 (17): R712–R721. Bibcode:2012CBio...22.R712N. doi:10.1016/j.cub.2012.06.020. PMID 22975002.
  36. ^ Pessiglione M, Heerema R, Daunizeau J, Vinckier F (April 2023). "Origins and consequences of mood flexibility: a computational perspective". Neurosci Biobehav Rev. 147: 105084. doi:10.1016/j.neubiorev.2023.105084. PMID 36764635.
  37. ^ Johnson SL, Edge MD, Holmes MK, Carver CS (2012). "The behavioral activation system and mania". Annu Rev Clin Psychol. 8: 243–267. doi:10.1146/annurev-clinpsy-032511-143148. PMC 3409638. PMID 22077912.
  38. ^ Johnson SL (February 2005). "Mania and dysregulation in goal pursuit: a review". Clin Psychol Rev. 25 (2): 241–262. doi:10.1016/j.cpr.2004.11.002. PMC 2847498. PMID 15642648.
  39. ^ Oken BS (November 2008). "Placebo effects: clinical aspects and neurobiology". Brain. 131 (Pt 11): 2812–2823. doi:10.1093/brain/awn116. PMC 2725026. PMID 18567924.
  40. ^ Hyland ME (June 2011). "Motivation and placebos: do different mechanisms occur in different contexts?". Philos Trans R Soc Lond B Biol Sci. 366 (1572): 1828–1837. doi:10.1098/rstb.2010.0391. PMC 3130400. PMID 21576140.
  41. ^ Düzel E, Bunzeck N, Guitart-Masip M, Düzel S (April 2010). "NOvelty-related motivation of anticipation and exploration by dopamine (NOMAD): implications for healthy aging". Neurosci Biobehav Rev. 34 (5): 660–669. doi:10.1016/j.neubiorev.2009.08.006. PMID 19715723.
  42. ^ Rangel-Gomez M, Meeter M (January 2016). "Neurotransmitters and Novelty: A Systematic Review". J Psychopharmacol. 30 (1): 3–12. doi:10.1177/0269881115612238. PMID 26601905.
  43. ^ Hollon NG, Burgeno LM, Phillips PE (October 2015). "Stress effects on the neural substrates of motivated behavior". Nat Neurosci. 18 (10): 1405–1412. doi:10.1038/nn.4114. PMC 4721524. PMID 26404715.
  44. ^ Baik JH (December 2020). "Stress and the dopaminergic reward system". Exp Mol Med. 52 (12): 1879–1890. doi:10.1038/s12276-020-00532-4. PMC 8080624. PMID 33257725.
  45. ^ Kalivas PW, Volkow ND (August 2005). "The neural basis of addiction: a pathology of motivation and choice". Am J Psychiatry. 162 (8): 1403–1413. doi:10.1176/appi.ajp.162.8.1403. PMID 16055761.
  46. ^ Lieberman HR (2007). "Cognitive methods for assessing mental energy". Nutr Neurosci. 10 (5–6): 229–42. doi:10.1080/10284150701722273. PMID 18284031.
  47. ^ Heaney, Dermot; Riboni, Giorgia (13 February 2024). "Disease mongering, overdiagnosis, and media practices: a critical discourse analysis of sluggish cognitive tempo (SCT) and the motivational deficiency disorder (MoDeD) spoof". Text & Talk. doi:10.1515/text-2022-0197. ISSN 1860-7330.
  48. ^ Moynihan, R. (2006). "Scientists find new disease: Motivational deficiency disorder". BMJ. 332 (7544): 745. doi:10.1136/bmj.332.7544.745-a. PMC 1420696.
  49. ^ a b c Wagner D, Mason SG, Eastwood JD (2024). "The experience of effort in ADHD: a scoping review". Front Psychol. 15: 1349440. doi:10.3389/fpsyg.2024.1349440. PMC 11184226. PMID 38895497.
  50. ^ Barkley, R.A. (2005). Attention-Deficit Hyperactivity Disorder, Third Edition: A Handbook for Diagnosis and Treatment. Guilford Publications. p. 445. ISBN 978-1-60623-750-2. Retrieved 3 August 2024.
  51. ^ Barkley, R.A. (2014). Attention-Deficit Hyperactivity Disorder, Fourth Edition: A Handbook for Diagnosis and Treatment. Guilford Publications. p. 1. ISBN 978-1-4625-1772-5. Retrieved 3 August 2024.
  52. ^ Barkley, R.A. (2022). Treating ADHD in Children and Adolescents. Guilford Publications. p. 1. ISBN 978-1-4625-4514-8. Retrieved 3 August 2024.
  53. ^ Russell Barkley (12 June 2023). "ADHD as Motivation Deficit Disorder". YouTube. Retrieved 3 August 2024.
  54. ^ Wasserman T, Wasserman LD (2015). "The misnomer of attention-deficit hyperactivity disorder". Appl Neuropsychol Child. 4 (2): 116–122. doi:10.1080/21622965.2015.1005487. PMID 25751517.
  55. ^ Hinshaw SP (May 2018). "Attention Deficit Hyperactivity Disorder (ADHD): Controversy, Developmental Mechanisms, and Multiple Levels of Analysis". Annu Rev Clin Psychol. 14: 291–316. doi:10.1146/annurev-clinpsy-050817-084917. PMID 29220204.
  56. ^ Ashinoff BK, Abu-Akel A (February 2021). "Hyperfocus: the forgotten frontier of attention". Psychol Res. 85 (1): 1–19. doi:10.1007/s00426-019-01245-8. PMC 7851038. PMID 31541305.
  57. ^ Quintero J, Gutiérrez-Casares JR, Álamo C (December 2022). "Molecular Characterisation of the Mechanism of Action of Stimulant Drugs Lisdexamfetamine and Methylphenidate on ADHD Neurobiology: A Review". Neurol Ther. 11 (4): 1489–1517. doi:10.1007/s40120-022-00392-2. PMC 9588136. PMID 35951288.
  58. ^ Brancati GE, Magnesa A, Acierno D, Carli M, De Rosa U, Froli A, Gemignani S, Ventura L, Weiss F, Perugi G (August 2024). "Current nonstimulant medications for adults with attention-deficit/hyperactivity disorder". Expert Rev Neurother. 24 (8): 743–759. doi:10.1080/14737175.2024.2370346. PMID 38915262.
  59. ^ Coghill D (2022). "The Benefits and Limitations of Stimulants in Treating ADHD". Curr Top Behav Neurosci. Current Topics in Behavioral Neurosciences. 57: 51–77. doi:10.1007/7854_2022_331. ISBN 978-3-031-11801-2. PMID 35503597.
  60. ^ Leichsenring F, Steinert C, Rabung S, Ioannidis JP (February 2022). "The efficacy of psychotherapies and pharmacotherapies for mental disorders in adults: an umbrella review and meta-analytic evaluation of recent meta-analyses". World Psychiatry. 21 (1): 133–145. doi:10.1002/wps.20941. PMC 8751557. PMID 35015359. Large SMDs were found for amphetamines98, 100, 102, small to medium SMDs for methylphenidate100, 101.