Rye (Secale cereale) is a grass grown extensively as a grain, a cover crop and a forage crop. It is a member of the wheat tribe (Triticeae) and is closely related to both wheat and barley (genera Triticum and Hordeum).[1] Rye grain is used for flour, bread, beer, crispbread, some whiskeys, some vodkas, and animal fodder. It can also be eaten whole, either as boiled rye berries or by being rolled, similar to rolled oats.

Rye
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Subfamily: Pooideae
Genus: Secale
Species:
S. cereale
Binomial name
Secale cereale
Synonyms

Secale fragile M.Bieb.

Origins edit

 
Wild rye

The rye genus Secale is in the grass tribe Triticeae, which contains other cereals such as barley (Hordeum) and wheat (Triticum).[2]

Rye is one of several cereals that grow wild in the Levant, central and eastern Turkey and adjacent areas. Evidence uncovered at the Epipalaeolithic site of Tell Abu Hureyra in the Euphrates valley of northern Syria suggests that rye was among the first cereal crops to be systematically cultivated, around 13,000 years ago.[3] However, that claim remains controversial; critics point to inconsistencies in the radiocarbon dates, and identifications based solely on grain, rather than on chaff.[4]

Domesticated rye occurs in small quantities at a number of Neolithic sites in Asia Minor (Anatolia, now Turkey), such as the Pre-Pottery Neolithic B Can Hasan III near Çatalhöyük,[5][6] but is otherwise absent from the archaeological record until the Bronze Age of central Europe, c. 1800–1500 BCE.[7]

It is possible that rye traveled west from Asia Minor as a secondary crop, meaning that it was a minor admixture in wheat as a result of Vavilovian mimicry, and was only later cultivated in its own right.[8] Archeological evidence of this grain has been found in Roman contexts along the Rhine and the Danube and in Ireland and Britain.[9] Roman naturalist Pliny the Elder was dismissive of a grain that may have been rye, writing that it "is a very poor food and only serves to avert starvation".[10] He said it was mixed with spelt "to mitigate its bitter taste, and even then is most unpleasant to the stomach".[11]

Description edit

Rye is a tall stout grass grown for its seeds.

Cultivation edit

 
The seeds of rye are some 7 or 8 mm long, much larger and less round than wheat.

Since the Middle Ages, people have cultivated rye widely in Central and Eastern Europe. It serves as the main bread cereal in most areas east of the France–Germany border and north of Hungary. In Southern Europe, it was cultivated on marginal lands.[12]

Rye grows well in much poorer soils than those necessary for most cereal grains. Thus, it is an especially valuable crop in regions where the soil has sand or peat. Rye plants withstand cold better than other small grains do. Rye will survive with snow cover that would otherwise result in winter-kill for winter wheat. Most farmers grow winter ryes, which are planted and begin to grow in autumn. In spring, the plants develop and produce their crop.[13]

Autumn-planted rye shows fast growth; by the summer solstice, plants reach their maximum height of about a 120 centimetres (4 feet), while spring-planted wheat has only recently germinated. Vigorous growth suppresses even the most noxious weed competitors and rye can be grown without application of herbicides.[citation needed]

Physical properties of rye affect attributes of the final food product such as seed size and surface area, and porosity. The surface area of the seed directly correlates to the drying and heat transfer time.[14] Smaller seeds have increased heat transfer, which leads to lower drying time. Seeds with lower amounts of porosity also have lower tendencies to lose water during the process of drying.[14]

Rye is harvested like wheat with a combine harvester, which cuts the plants, threshes and winnows the grain, and releases the straw to the field where it is later pressed into bales or left as soil amendment. The resultant grain is stored in local silos or transported to regional grain elevators and combined with other lots for storage and distant shipment. Before the era of mechanised agriculture, rye harvesting was a manual task performed with scythes or sickles.[15][16]

Agroecology edit

Winter rye is any breed of rye planted in the autumn to provide ground cover for the winter. It grows during warmer days of the winter when sunlight temporarily warms the plant above freezing, even while there is general snow cover. It can be used to prevent the growth of winter-hardy weeds,[17] and can either be harvested as a bonus crop or tilled directly into the ground in spring to provide more organic matter for the next summer's crop. It is sometimes used in winter gardens and is a common nurse crop.[citation needed]

Rye grows better than any other cereal in heavy clay and light sandy soil, and infertile or drought-affected soils. It can tolerate pH between 4.5 and 8.0, but soils having pH 5.0 to 7.0 are best suited for rye cultivation. Rye grows best in fertile, well-drained loam or clay-loam soils.[18]

Rye can thrive in subzero environments. The leaves of winter rye produce various antifreeze polypeptides (different from the antifreeze polypeptides produced by some fish and insects).[19]

Rye is a common, unwanted invader of winter wheat fields. If allowed to grow and mature, it may cause substantially reduced prices (docking) for harvested wheat.[20]

Pests and diseases edit

The nematode Ditylenchus dipsaci, and the insects leaf beetle, fruit fly, gout fly, cereal chafer, dart moth, cereal bug, Hessian fly, and rustic shoulder knot are among the rye pests which can seriously affect plant health.[21]

Rye is highly susceptible to the ergot fungus.[22][23] Consumption of ergot-infected rye by humans and animals results in a serious medical condition known as ergotism. Ergotism can cause both physical and mental harm, including convulsions, miscarriage, necrosis of digits, hallucinations and death. Historically, damp northern countries that have depended on rye as a staple crop were subject to periodic epidemics of this condition. Such epidemics have been found to correlate with periods of frequent witch trials, such as the Salem witch trials in Massachusetts in 1692.[13] Modern grain-cleaning and milling methods have practically eliminated the disease, but contaminated flour may end up in bread and other food products if the ergot is not removed before milling.[24]

After an absence of 60 years, stem rust (Puccinia graminis f. sp. tritici) has returned to Europe in the 2020s.[25] Areas affected include Germany, Russia (Western Siberia), Spain, and Sweden.[25] Races PTGBH, PTGFH, RKBBK, SKGBC, SKGBH, SKGBR, TKDLK, TKGBK, TKGBR, and TKGDH are now present on rye in Spain.[25]

Production and consumption edit

 
Exports by country (2014)[26]
 
Map of global production. Rye is grown mainly across Central and Northern Europe into Russia.

Rye is grown primarily in Eastern, Central and Northern Europe. The main rye belt stretches from northern Germany through Poland, Ukraine, and eastwards into central and northern Russia. Rye is also grown in North America, in South America including Argentina, in Oceania (Australia]] and New Zealand), in Turkey, and in northern China. Production levels of rye have fallen since 1992 in most of the producing nations, as of 2022; for instance, production of rye in Russia fell from 13.9 Mt in 1992 to 2.2 Mt in 2022.[27][28]

Top rye producers (in metric tons)
Producer 2022[28] 2020[28] 2018[28] 2016[28] 2014[28]
  European Union 7,450,920 8,939,510 6,141,040 7,400,686 8,890,726
  Germany 3,132,300 3,513,400 2,201,400 3,173,800 3,854,400
  Poland 2,337,130 2,929,930 2,126,570 2,199,578 2,792,593
  Russia 2,178,808 2,377,629 1,916,056 2,547,878 3,280,759
  Belarus 750,000 1,050,702 502,505 650,908 867,075
  Denmark 691,470 699,370 476,590 577,200 677,800
  Canada 520,177 487,800 236,400 436,000 217,500
  China 500,767 512,591 504,698 545,657 520,000
  Ukraine 314,030 456,780 393,780 391,560 478,000
  United States 312,460 292,930 214,180 290,379 182,610
  United Kingdom 242,207 72,450 95,366 48,563 55,899
  Argentina 225,510 221,201 86,098 60,676 52,130
  Spain 188,880 407,620 404,280 377,355 290,970
World total 13,143,055 15,036,812 10,702,482 12,999,144 15,204,158

World trade of rye is low compared with other grains such as wheat. The total export of rye for 2016 was $186M[29] compared with $30.1B for wheat.[30]

Poland consumes the most rye per person at 32.4 kg (71 lb) per capita (2009). Nordic and Baltic countries are also very high. The EU in general is around 5.6 kg (12 lb) per capita. The entire world only consumes 0.9 kg (2 lb) per capita.[31]

Uses edit

Food and drink edit

 
Sultsina, a traditional Karelian dish made of unleavened rye dough and a farina filling

Rye grain is refined into a flour high in gliadin but low in glutenin and rich in soluble fiber. Alkylresorcinols are phenolic lipids present in high amounts in the bran layer (e.g. pericarp, testa and aleurone layers) of wheat and rye (0.1–0.3% of dry weight).[32] Rye bread, including pumpernickel, is made using rye flour and is a widely eaten food in Northern and Eastern Europe.[33][34] Rye is also used to make crisp bread.

Rye grain is used to make alcoholic drinks, such as rye whiskey and rye beer.

Other uses edit

Other uses of rye grain include kvass and an herbal medicine known as rye extract. Rye straw is used as livestock bedding, as a cover crop and green manure for soil amendment, and to make crafts such as corn dollies.

Rye flour is used in the original way to make Falun red paint, when mixed with linseed oil and iron oxide, widely used as a house paint in Sweden.[35]

Rye grain (aka "Rye Berries") is a popular medium to use as a grain spawn when cultivating some varieties of edible mushrooms. The grain is cleaned, hydrated, and sterilized and then injected with mushroom spores and the mycelium grow using the grain to obtain water and nutrients.

Production of hybrids edit

Rye has long been considered an inferior grain to wheat in quality and digestibility, but has far larger seeds and is hardier. In the 19th century, efforts were made to create a hybrid with the best qualities of both. This initially named triticosecale, but became known as triticale. Initially fraught with fertility and germination problems, triticale is becoming more common worldwide in the 21st century, with millions of acres/hectares being produced.[citation needed]

Varieties of rye hold much genetic diversity,[36][37][38] which can be used to improve other crops such as wheat. For example, the pollination abilities of wheat was improved by the addition of the rye chromosome 4R; this increased the size of the wheat anther and the amount of pollen.[39] The 1R chromosome is the source of many crop disease resistance genes.[40] Varieties such as Petkus, Insave, Amigo, and Imperial have donated 1R-originating resistance to wheat.[40] AC Hazlet rye is a medium-sized fall variety rye that showed resistance to both lodging and shattering.[41] Rye was the gene donor of Sr31 – a stem rust resistance gene – introgressed into wheat.[42]

The characteristics of S. cereale have been combined with another perennial rye, S. montanum, to produce S. cereanum, which has the beneficial characteristics of each. The hybrid rye can be grown in harsh environments and on poor soil. It provides improved forage with digestible fiber and protein.[43]

Nutritional value edit

Rye
Nutritional value per 100 g (3.5 oz)
Energy1,414 kJ (338 kcal)
75.86 g
Sugars0.98 g
Dietary fiber15.1 g
1.63 g
10.34 g
VitaminsQuantity
%DV
Thiamine (B1)
25%
0.3 mg
Riboflavin (B2)
23%
0.3 mg
Niacin (B3)
25%
4 mg
Pantothenic acid (B5)
20%
1 mg
Vitamin B6
18%
0.3 mg
Folate (B9)
10%
38 μg
Choline
5%
30 mg
Vitamin E
7%
1 mg
Vitamin K
5%
6 μg
MineralsQuantity
%DV
Calcium
2%
24 mg
Iron
17%
3 mg
Magnesium
26%
110 mg
Manganese
130%
3 mg
Phosphorus
27%
332 mg
Potassium
17%
510 mg
Sodium
0%
2 mg
Zinc
27%
3 mg
Other constituentsQuantity
Water10.6 g
Selenium14 µg

Percentages estimated using US recommendations for adults,[44] except for potassium, which is estimated based on expert recommendation from the National Academies.[45]

A 100-gram (3+12-ounce) reference serving of rye provides 1,410 kilojoules (338 kilocalories) of food energy and is a rich source (20% or more of the Daily Value [DV]) of essential nutrients, including protein, dietary fiber, the B vitamins, niacin (27% DV) and vitamin B6 (23% DV), and several dietary minerals (table). Highest nutrient contents are for manganese (143% DV) and phosphorus (47% DV).

Health effects edit

According to Health Canada and the U.S. Food and Drug Administration, consuming at least 4 grams (0.14 oz) per day of rye beta-glucan or 0.65 grams (0.023 oz) per serving of soluble fiber can lower levels of blood cholesterol, a risk factor for cardiovascular diseases.[46][47]

Eating whole-grain rye, as well as other high-fibre grains, improves regulation of blood sugar (i.e., reduces blood glucose response to a meal).[48] Consuming breakfast cereals containing rye over weeks to months also improved cholesterol levels and glucose regulation.[49]

Health concerns edit

Like wheat, barley, and their hybrids and derivatives, rye contains glutens and related prolamines, which makes it an unsuitable grain for consumption by people with gluten-related disorders, such as celiac disease, non-celiac gluten sensitivity, and wheat allergy, among others.[50] Nevertheless, some wheat allergy patients can tolerate rye or barley.[51]

Ergotism is an illness that can result from eating rye and other grains infected by ergot fungi (which produce ergoline toxins in infected products). Although it is no longer a common illness because of modern food safety efforts, it was common before the 20th century, and remains a risk if food safety vigilance breaks down.[52]

In human culture edit

 
1878 oil painting A Rye Field by Ivan Shishkin


References edit

  1. ^ "Forage Identification: Rye". University of Wyoming: Department of Plant Sciences. September 26, 2017. Archived from the original on August 18, 2017. Retrieved September 26, 2017.
  2. ^ Soreng, Robert J.; Peterson, Paul M.; Romaschenko, Konstantin; et al. (2017). "A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications". Journal of Systematics and Evolution. 55 (4): 259–290. doi:10.1111/jse.12262. ISSN 1674-4918.
  3. ^ Hillman, Gordon; Hedges, Robert; Moore, Andrew; Colledge, Susan; Pettitt, Paul (2001). "New evidence of Lateglacial cereal cultivation at Abu Hureyra on the Euphrates". The Holocene. 11 (4): 383–393. Bibcode:2001Holoc..11..383H. doi:10.1191/095968301678302823. S2CID 84930632. Archived from the original on November 20, 2021. Retrieved July 12, 2016.
  4. ^ Colledge, Sue; Conolly, James (2010). "Reassessing the evidence for the cultivation of wild crops during the Younger Dryas at Tell Abu Hureyra, Syria". Environmental Archaeology. 15 (2): 124–138. Bibcode:2010EnvAr..15..124C. doi:10.1179/146141010X12640787648504. S2CID 129087203.
  5. ^ Hillman, Gordon (1978). "On the Origins of Domestic rye: Secale Cereale: The Finds from Aceramic Can Hasan III in Turkey". Anatolian Studies. 28: 157–174. doi:10.2307/3642748. JSTOR 3642748. S2CID 85225244. – via JSTOR (subscription required)
  6. ^ Sidhu, Jagdeep; Ramakrishnan, Sai Mukund; Shaukat, Ali; Amy, Bernado; Bai, Guihua; Sidrat, Abdullah; Ayana, Girma; Sehgal, Sunish (2019). "Assessing the genetic diversity and characterizing genomic regions conferring Tan Spot resistance in cultivated rye". PLOS ONE. 14 (3): e0214519. Bibcode:2019PLoSO..1414519S. doi:10.1371/journal.pone.0214519. PMC 6438500. PMID 30921415.
  7. ^ Zohary, Daniel; Hopf, Maria; Weiss, Ehud (2012). Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford: Oxford University Press. p. 62. ISBN 978-0-19-954906-1. Retrieved October 5, 2016 – via Google Books.
  8. ^ McElroy, J. Scott (2014). "Vavilovian Mimicry: Nikolai Vavilov and His Little-Known Impact on Weed Science". Weed Science. 62 (2): 207–216. doi:10.1614/ws-d-13-00122.1. S2CID 86549764.
  9. ^ Gyulai, Ferenc (2014). "Archaeobotanical overview of rye (Secale Cereale L.) in the Carpathian-basin I. from the beginning until the Roman age". Journal of Agricultural and Environmental Science. 1 (2): 25–35. Archived from the original on December 31, 2019. Retrieved July 14, 2016. page 26.
  10. ^ Evans, L. T.; Peacock, W. J. (March 19, 1981). Wheat Science: Today and Tomorrow. Cambridge University Press. p. 11. ISBN 978-0-521-23793-2. Archived from the original on May 26, 2020. Retrieved November 15, 2015 – via Google Books.
  11. ^ Pliny the Elder (1855) [c. 77–79]. The Natural History. Translated by Bostock, John; Riley, H. T. London: Taylor and Francis (T&F). Book 18, Ch. 40. Archived from the original on January 6, 2017. Retrieved July 12, 2016 – via Perseus Digital Library, Trufts University.
  12. ^ Behre, Karl-Ernst (1992). "The history of rye cultivation in Europe". Vegetation History and Archaeobotany. 1 (3). doi:10.1007/BF00191554. ISSN 0939-6314. S2CID 129518700. Archived from the original on March 23, 2022. Retrieved February 17, 2022.
  13. ^ a b Wong, George J. (1998). "Ergot of Rye: History". Botany 135 Syllabus. University of Hawaiʻi at Mānoa, Botany Department. Archived from the original on November 24, 2005. Retrieved July 12, 2016.
  14. ^ a b
    Jouki, Mohammad; Emam-Djomeh, Zahra; Khazaei, Naimeh (2012). "Physical Properties of Whole Rye Seed (Secale cereal)". International Journal of Food Engineering. 8 (4). doi:10.1515/1556-3758.2054. S2CID 102003836.
    Species binomial misspelled in original.
  15. ^ Jensen, Joan M. (1988). Loosening the Bonds: Mid-Atlantic Farm Women, 1750–1850. New Haven: Yale University Press (YUP). p. 47. ISBN 978-0-300-04265-8. Retrieved July 17, 2016 – via Google Books.
  16. ^ Jones, Peter M. (2016). Agricultural Enlightenment: Knowledge, Technology, and Nature, 1750–1840. Oxford: Oxford University Press (OUP). p. 123. ISBN 978-0-19-102515-0.
  17. ^ Burgos, Nilda R.; Talbert, Ronald E.; Kuk, Yong In (2006). "Grass-legume mixed cover crops for weed management". In Sing, Harinder P.; Batish, Daisy Rani; Kohli, Ravinder Kumar (eds.). Handbook of Sustainable Weed Management. New York: Haworth Press, Inc. p. 110. ISBN 978-1-56022-957-5. Retrieved October 5, 2016 – via Google Books.
  18. ^ Willy H. Verheye, ed. (2010). "Growth And Production Of Oat And Rye". Soils, Plant Growth and Crop Production Volume II. EOLSS Publishers. p. 121. ISBN 978-1-84826-368-0. Archived from the original on May 11, 2021. Retrieved December 4, 2020.
  19. ^ Hon, W. C.; Griffith, M.; Chong, P.; Yang, D. S.-C. (March 1, 1994). "Extraction and Isolation of Antifreeze Proteins from Winter Rye (Secale cereale L.) Leaves". Plant Physiology. 104 (3): 971–980. doi:10.1104/pp.104.3.971. ISSN 1532-2548. PMC 160695. PMID 12232141.
  20. ^ Lyon, Drew J.; Klein, Robert N (May 2007) [2002]. "Rye Control in Winter Wheat" (Revised ed.). Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln Extension. Archived from the original on April 13, 2014. Retrieved July 12, 2016.
  21. ^ Matz, Samuel A. (1991). Chemistry and Technology of Cereals as Food and Feed. New York: Van Nostrand Reinhold/AVI. pp. 181–182. ISBN 978-0-442-30830-8. Retrieved July 14, 2016 – via Google Books.
  22. ^ ergot Archived March 3, 2016, at the Wayback Machine, online medical dictionary
  23. ^ ergot, Dorland's Medical Dictionary
  24. ^ Petruzzello, Melissa. "Ergot". Britannica. Encyclopædia Britannica, Inc. Archived from the original on February 12, 2019. Retrieved March 3, 2019.
  25. ^ a b c Annika, Djurle; Young, Beth; Berlin, Anna; Vågsholm, Ivar; Blomstrom, Anne; Nygren, Jim; Kvarnheden, Anders (2022). "Addressing biohazards to food security in primary production". Food Security. 14 (6). Springer Nature: 1475–1497. doi:10.1007/s12571-022-01296-7. eISSN 1876-4525. ISSN 1876-4517. S2CID 250250761.
  26. ^ Harvard Atlas of Economic Complexity
  27. ^ "Crops and livestock products". FAOSTAT. Food and Agriculture Organization of the United Nations.
  28. ^ a b c d e f "FAOSTAT". www.fao.org. Retrieved March 1, 2024.
  29. ^ "OEC - Countries that export Rye (2016)". Archived from the original on March 23, 2022. Retrieved October 22, 2017.
  30. ^ "OEC - Countries that export Wheat except durum wheat, and meslin (2016)". Archived from the original on March 23, 2022. Retrieved October 22, 2017.
  31. ^ "Statistics and Usage - www.ryeandhealth.org". Archived from the original on June 15, 2018. Retrieved October 22, 2017.
  32. ^ Suzuki, Yoshikatsu; Esumi, Yasuaki; Yamaguchi, Isamu (1999). "Structures of 5-alkylresorcinol-related analogues in rye". Phytochemistry. 52 (2): 281–289. Bibcode:1999PChem..52..281S. doi:10.1016/S0031-9422(99)00196-X.
  33. ^ "Grains: Rye" Archived November 13, 2018, at the Wayback Machine (in Dutch) bakkerijmuseum.nl
  34. ^ Prättälä, Ritva; Helasoja, Ville; Mykkänen, Hannu (2000). "The consumption of rye bread and white bread as dimensions of health lifestyles in Finland". Public Health Nutrition. 4 (3): 813–819. doi:10.1079/PHN2000120. PMID 11415489.
  35. ^ "Swedish Red Paint - Falu Röd". Archived from the original on September 25, 2020. Retrieved March 25, 2021.
  36. ^ Ribeiro, Miguel; Seabra, Luís; Ramos, António; Santos, Sofia; Pinto-Carnide, Olinda; Carvalho, Carlos; Igrejas, Gilberto (April 1, 2012). "Polymorphism of the storage proteins in Portuguese rye (Secale cereale L.) populations". Hereditas. 149 (2): 72–84. doi:10.1111/j.1601-5223.2012.02239.x. ISSN 1601-5223. PMID 22568702.
  37. ^ Bauer, Eva; Schmutzer, Thomas; Barilar, Ivan; Mascher, Martin; Gundlach, Heidrun; Martis, Mihaela M.; Twardziok, Sven O.; Hackauf, Bernd; Gordillo, Andres (March 1, 2017). "Towards a whole-genome sequence for rye (Secale cereale L.)". The Plant Journal. 89 (5): 853–869. doi:10.1111/tpj.13436. ISSN 1365-313X. PMID 27888547.
  38. ^ Rabanus-Wallace, M.; Stein, Nils (2021). The Rye Genome. Springer Nature. pp. 85–100. ISBN 978-3-030-83383-1. which cites Li, Guangwei; Wang, Lijian; Yang, Jianping; et al. (2021). "A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes". Nature Genetics. 53 (4). Nature Portfolio: 574–584. doi:10.1038/s41588-021-00808-z. ISSN 1061-4036. PMC 8035075. PMID 33737755. S2CID 232298036.
  39. ^ Nguyen, Vy; Fleury, Delphine; Timmins, Andy; Laga, Hamid; Hayden, Matthew; Mather, Diane; Okada, Takashi (February 26, 2015). "Addition of rye chromosome 4R to wheat increases anther length and pollen grain number". Theoretical and Applied Genetics. 128 (5): 953–964. doi:10.1007/s00122-015-2482-4. ISSN 0040-5752. PMID 25716820. S2CID 16421403.
  40. ^ a b Herrera, Leonardo; Gustavsson, Larisa; Åhman, Inger (2017). "A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.)". Hereditas. 154 (1). BioMed Central: 1–9. doi:10.1186/s41065-017-0033-5. ISSN 1601-5223. PMC 5445327. PMID 28559761.
  41. ^ SeCan. (2014). AC® Hazlet. Retrieved from "Archived copy" (PDF). Archived from the original (PDF) on March 4, 2016. Retrieved November 28, 2014.{{cite web}}: CS1 maint: archived copy as title (link)
  42. ^ Ellis, Jeffrey G.; Lagudah, Evans S.; Spielmeyer, Wolfgang; Dodds, Peter N. (November 24, 2014). "The past, present and future of breeding rust resistant wheat". Frontiers in Plant Science. 5. doi:10.3389/fpls.2014.00641. ISSN 1664-462X. PMC 4241819. PMID 25505474.
  43. ^ Sipos, Tamás; Halász, Erika (April 25, 2007). "The role of perennial rye (Secale cereale × S. montanum) in sustainable agriculture". Cereal Research Communications. 35 (2): 1073–1075. doi:10.1556/CRC.35.2007.2.227. ISSN 0133-3720.
  44. ^ United States Food and Drug Administration (2024). "Daily Value on the Nutrition and Supplement Facts Labels". Retrieved March 28, 2024.
  45. ^ National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Dietary Reference Intakes for Sodium and Potassium (2019). Oria, Maria; Harrison, Meghan; Stallings, Virginia A. (eds.). Dietary Reference Intakes for Sodium and Potassium. The National Academies Collection: Reports funded by National Institutes of Health. Washington (DC): National Academies Press (US). ISBN 978-0-309-48834-1. PMID 30844154.{{cite book}}: CS1 maint: multiple names: authors list (link)
  46. ^ "21 CFR Part 101 [Docket No. 2004P-0512], Food Labeling: Health Claims; Soluble Dietary Fiber From Certain Foods and Coronary Heart Disease". US Food and Drug Administration. May 22, 2006. Archived from the original on February 24, 2021. Retrieved December 2, 2015.
  47. ^ "Summary of Health Canada's Assessment of a Health Claim about Barley Products and Blood Cholesterol Lowering". Health Canada. July 12, 2012. Retrieved November 27, 2022.
  48. ^ Harris KA, Kris-Etherton PM (November 2010). "Effects of whole grains on coronary heart disease risk". Current Atherosclerosis Reports. 12 (6): 368–76. doi:10.1007/s11883-010-0136-1. PMID 20820954. S2CID 29100975.
  49. ^ Williams PG (September 2014). "The benefits of breakfast cereal consumption: a systematic review of the evidence base". Advances in Nutrition. 5 (5): 636S–673S. doi:10.3945/an.114.006247. PMC 4188247. PMID 25225349.
  50. ^ Tovoli, F.; Masi, C.; Guidetti, E.; Negrini, G.; Paterini, P.; Bolondi, L. (March 16, 2015). "Clinical and diagnostic aspects of gluten related disorders". World Journal of Clinical Cases. 3 (3): 275–284. doi:10.12998/wjcc.v3.i3.275. PMC 4360499. PMID 25789300.
  51. ^ Pietzak, M. (January 2012). "Celiac Disease, Wheat Allergy, and Gluten Sensitivity". Journal of Parenteral and Enteral Nutrition. 36 (1 Suppl): 68S–75S. doi:10.1177/0148607111426276. PMID 22237879.
  52. ^ Belser-Ehrlich S, Harper A, Hussey J, Hallock R (2013). "Human and cattle ergotism since 1900: symptoms, outbreaks, and regulations". Toxicol Ind Health (Review). 29 (4): 307–16. doi:10.1177/0748233711432570. PMID 22903169. S2CID 26814635.

Further reading edit

  • Schlegel, Rolf (2006). "Rye (Secale cereale L.): A Younger Crop Plant with Bright Future". In Sing, R. J.; Jauhar, P. (eds.). Genetic Resources, Chromosome Engineering, and Crop Improvement. Vol. II–Cereals. Boca Raton, Florida: CRC Press. pp. 365–394. ISBN 978-0-8493-1430-8. Schlegel provides a 2011 updated version online.

External links edit