Complex Polygons (C2)
edit
Complex polyhedra (C3)
edit
There are 9 unique regular and uniform complex polyhedra from 14 Wythoff constructions (ringed patterns) in the L3 and M3 Shephard groups. These polyhedra can be seen a complex analogues of tetrahedral symmetry and octahedral symmetry of the regular tetrahedron, cube, and octahedron.
Type |
L3 = , order 648 |
M3 = , order 1296
|
Regular |
= |
(27,72,27) |
|
(54,216,72) |
= |
(72,216,54)
|
Truncation |
= |
(27,72+216,27+27) |
|
(648,216+432,72+72) |
= |
(648,216+432,72+72)
|
Quasiregular |
= |
(27,216,54+54) |
= |
(216,432,54+72)
|
Cantellation |
= |
(216,216+216,27+27+72) |
|
(216,216+432,54+72)
|
Cantitruncation |
= |
(648,216+216+216,27+27+72) |
|
(1296,432+432+648,54+54+216)
|
= - analogous to real tetrahedron
Regular
L3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L2 |
|
( )
|
f0
|
27 |
8 |
8 |
3{3}3 |
L3/L2 = 27*4!/4! = 27
|
L1L1 |
|
3{ }
|
f1
|
3 |
72 |
3 |
3{ } |
L3/L1L1 = 27*4!/9 = 72
|
L2 |
|
3{3}3
|
f2
|
8 |
8 |
27 |
( ) |
L3/L2 = 27*4!/4! = 27
|
Rectified Hessian polyhedron
edit
= - analogous to real octahedron
Regular
M3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
M2 |
|
( )
|
f0
|
72 |
9 |
6 |
3{4}2 |
M3/M2 = 1296/18 = 72
|
L1A1 |
|
3{ }
|
f1
|
3 |
216 |
2 |
{ } |
M3/L1A1 = 1296/3/2 = 216
|
L2 |
|
3{3}3
|
f2
|
8 |
8 |
54 |
( ) |
M3/L2 = 1296/24 = 54
|
|
Quasiregular
L3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L1L1 |
|
( )
|
f0
|
72 |
9 |
3 |
3 |
3{ }×3{ } |
L3/L1L1 = 648/9 = 72
|
L1 |
|
3{ }
|
f1
|
3 |
216 |
1 |
1 |
{ } |
L3/L1 = 648/3 = 216
|
L2 |
|
3{3}3
|
f2
|
8 |
8 |
27 |
* |
( ) |
L3/L2 = 648/24 = 27
|
|
8 |
8 |
* |
27
|
|
Truncated Hessian polyhedron
edit
= - analogous to real truncated tetrahedron
Truncated
L3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L1 |
|
( )
|
f0
|
27 |
1 |
3 |
3 |
3 |
|
L3/L1 = 648/24 = 27
|
L1L1 |
|
3{ }
|
f1
|
3 |
72 |
* |
3 |
0 |
|
L3/L1L1 = 648/3/3 = 72
|
L1 |
|
3 |
* |
216 |
1 |
2 |
|
L3/L1 = 648/3 = 216
|
L2 |
|
t(3{3}3)
|
f2
|
24 |
8 |
8 |
27 |
* |
( ) |
L3/L2 = 648/24 = 27
|
|
3{3}3
|
8 |
0 |
8 |
* |
27
|
Cantellated Hessian polyhedron
edit
= - analogous to real cuboctahedron
Cantellated
L3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L1 |
|
( )
|
f0
|
216 |
1 |
3 |
3 |
3 |
0 |
3{ }×{ } |
L3/L1 = 648/3 = 216
|
|
3{ }
|
f1
|
3 |
216 |
* |
2 |
0 |
0 |
{ }
|
|
3 |
* |
216 |
1 |
1 |
0
|
L2 |
|
3{3}3
|
f2
|
8 |
8 |
0 |
27 |
* |
* |
( ) |
L3/L2 = 648/24 = 27
|
L1L1 |
|
3{ }×3{ }
|
9 |
3 |
3 |
* |
72 |
* |
L3/L1L1 = 648/9 = 72
|
L2 |
|
3{3}3
|
8 |
0 |
8 |
* |
* |
27 |
L3/L2 = 648/24 = 27
|
|
Rectified
M3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L1A1 |
|
( )
|
f0
|
216 |
6 |
3 |
2 |
3{ }×{ } |
M3/L1A1 = 1296/6 = 216
|
L1 |
|
3{ }
|
f1
|
3 |
432 |
1 |
1 |
{ } |
M3/L1 = 1296/3 = 432
|
L2 |
|
3{3}3
|
f2
|
8 |
8 |
54 |
* |
( ) |
M3/L2 = 1296/24 = 54
|
M2 |
|
3{4}2
|
9 |
6 |
* |
72 |
M3/M2 = 1296/18 = 72
|
|
Cantitruncated Hessian polyhedron
edit
= - analogous to real truncated octahedron
Truncated
M3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
A1 |
|
( )
|
f0
|
648 |
? |
? |
? |
? |
|
M3/L1 = 1296/2 = 648
|
L1A1 |
|
3{ }
|
f1
|
3 |
216 |
* |
? |
? |
|
M3/L1A1 = 1296/3/2 = 216
|
L1 |
|
3 |
* |
432 |
? |
? |
|
M3/L1 = 1296/3 = 432
|
L2 |
|
t(3{3}3)
|
f2
|
24 |
8 |
8 |
54 |
* |
( ) |
M3/L2 = 1296/24 = 54
|
M2 |
|
3{4}2
|
9 |
0 |
6 |
* |
72 |
M3/M2 = 1296/48 = 27
|
|
Cantitruncated
L3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
|
|
( )
|
f0
|
648 |
? |
? |
? |
? |
? |
? |
|
L3 = 648
|
L1 |
|
3{ }
|
f1
|
3 |
216 |
* |
* |
? |
? |
? |
|
L3/L1 = 648/3 = 216
|
|
3 |
* |
216 |
* |
? |
? |
?
|
|
3 |
* |
* |
216 |
? |
? |
?
|
L2 |
|
3{3}3
|
f2
|
24 |
8 |
8 |
0 |
27 |
* |
* |
( ) |
L3/L2 = 648/24 = 27
|
L1L1 |
|
3{ }×3{ } |
9 |
3 |
0 |
3 |
* |
72 |
* |
L3/L1/L1 = 648/3/3 = 72
|
L2 |
|
3{3}3 |
24 |
0 |
8 |
8 |
* |
* |
27 |
L3/L2 = 648/24 = 27
|
|
Double Hessian polyhedron
edit
Double Hessian polyhedron - analogous to real cube
Regular
M3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L2 |
|
( )
|
f0
|
54 |
8 |
8 |
3{3}3 |
M3/L2 = 1296/24 = 54
|
L1A1 |
|
{ }
|
f1
|
2 |
216 |
3 |
3{ } |
M3/L1A1 = 1296/3/2 = 216
|
M2 |
|
2{4}3
|
f2
|
6 |
9 |
72 |
( ) |
M3/M2 = 1296/18 = 72
|
Truncated double Hessian polyhedron
edit
- analogous to real truncated cube
Truncated
M3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L1 |
|
( )
|
f0
|
648 |
? |
? |
? |
? |
|
M3/L1 = 1296/3 = 432
|
L1A1 |
|
{ }
|
f1
|
2 |
216 |
* |
? |
? |
|
M3/L1A1 = 1296/6 = 216
|
L1 |
|
3{ }
|
3 |
* |
432 |
? |
? |
|
M3/L1 = 1296/3 = 432
|
M2 |
|
t(3{4}2)
|
f2
|
24 |
8 |
8 |
72 |
* |
( ) |
M3/M2 = 1296/18 = 72
|
L2 |
|
3{3}3
|
8 |
0 |
8 |
* |
72 |
M3/L2 = 1296/24 = 54
|
Cantellated double Hessian polyhedron
edit
- analogous to real rhombicuboctahedron
Cantellated
M3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L1 |
|
( )
|
f0
|
216 |
1 |
3 |
3 |
3 |
0 |
|
M3/L1 = 1296/3 = 216
|
A1 |
|
{ }
|
f1
|
3 |
648 |
* |
2 |
0 |
0 |
{ } |
M3/A1 = 1296/2 = 648
|
L1 |
|
3{ }
|
3 |
* |
216 |
1 |
1 |
0 |
M3/L1 = 1296/3 = 216
|
M2 |
|
3{4}2
|
f2
|
9 |
6 |
0 |
72 |
* |
* |
( ) |
M3/M2 =1296/18 = 72
|
L1A1 |
|
3{ }×{ }
|
6 |
3 |
2 |
* |
216 |
* |
M3/L1A1 = 1296/6 = 216
|
L2 |
|
3{3}3
|
8 |
0 |
8 |
* |
* |
54 |
M3/L2 = 1296/24 = 54
|
Cantitruncated double Hessian polyhedron
edit
- analogous to real truncated cuboctahedron
Cantitruncated
M3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
|
|
( )
|
f0
|
1296 |
? |
? |
? |
? |
? |
? |
|
M3 = 1296
|
L1 |
|
3{ }
|
f1
|
3 |
432 |
* |
* |
? |
? |
? |
|
M3/L1 = 1296/3 = 432
|
|
3 |
* |
432 |
* |
? |
? |
?
|
A1 |
|
{ }
|
3 |
* |
* |
648 |
? |
? |
? |
M3/A1 = 1296/2 = 648
|
L2 |
|
t(3{3}3)
|
f2
|
24 |
8 |
8 |
0 |
54 |
* |
* |
( ) |
M3/L2 = 1296/24 = 54
|
L1A1 |
|
3{ }×{ } |
6 |
3 |
0 |
2 |
* |
216 |
* |
M3/L1/A1 = 1296/6 = 216
|
M2 |
|
t(3{4}2) |
18 |
0 |
9 |
6 |
* |
* |
27 |
M3/M2 = 1296/48 = 27
|
Witting polytope (C4)
edit
- ^ Lehrer & Taylor 2009, p.87
- ^ Complex Regular Polytopes, p. 117