Proof of l'Hôpital's rule edit

The following proof is due to (Taylor 1952), where a unified proof for the 0/0 and ±∞/±∞ indeterminate forms is given. Taylor notes that different proofs may be found in (Lettenmeyer 1936) and (Wazewski 1949).

Let f and g be functions satisfying the hypotheses in the General form section. Let   be the open interval in the hypothesis with endpoint c. Considering that   on this interval and g is continuous,   can be chosen smaller so that g is nonzero on  [1].

For each x in the interval, define   and   as   ranges over all values between x and c. (The symbols inf and sup denote the infimum and supremum.)

From the differentiability of f and g on  , Cauchy's mean value theorem ensures that for any two distinct points x and y in   there exists a   between x and y such that  . Consequently   for all choices of distinct x and y in the interval. The value g(x)-g(y) is always nonzero for distinct x and y in the interval, for if it was not, the mean value theorem would imply the existence of a p between x and y such that g' (p)=0.

The definition of m(x) and M(x) will result in an extended real number, and so it is possible for them to take on the values ±∞. In the following two cases, m(x) and M(x) will establish bounds on the ratio f/g.

Case 1:  

For any x in the interval  , and point y between x and c,

 

and therefore as y approaches c,   and   become zero, and so

 .

Case 2:  

For any x in the interval  , and point y between x and c,

 .

As y approaches c, both   and   become zero, and therefore

 

(For readers skeptical about the x 's under the limit superior and limit inferior, remember that y is always between x and c, and so as x approaches c, so will y. The limsup and liminf are necessary: we may not yet write "lim" since the existence of that limit has not yet been established.)

In both cases,

 .

By the Squeeze theorem, the limit exists and  . This is the result that was to be proven.

[2]

  1. ^ Since g' is nonzero and g is continuous on the interval, it is impossible for g to be zero more than once on the interval. If it had two zeros, the mean value theorem would assert the existence of a point p in the interval between the zeros such that g' (p)=0. So either g is already nonzero on the interval, or else the interval can be reduced in size so as not to contain the single zero of g.
  2. ^ Spivak, Michael (1994). Calculus. Houston, Texas: Publish or Perish. pp. 201–202, 210–211. ISBN 0-914098-89-6.