User:Pingu Is Sumerian/Sandbox

A cavity magnetron is a high-powered vacuum tube that generates non-coherent microwaves. They are commonly found in microwave ovens, as well as various radar applications.

Construction and operation edit

 
A similar magnetron with a different section removed (magnet is not shown).
 
Magnetron with section removed (magnet is not shown)

All cavity magnetrons consist of a hot filament (cathode) kept at, or pulsed to, a high negative potential by a high-voltage, direct-current power supply. The cathode is built into the center of an evacuated, lobed, circular chamber. A magnetic field parallel to the filament is imposed by a permanent magnet. The magnetic field causes the electrons, attracted to the (relatively) positive outer part of the chamber, to spiral outward in a circular path rather than moving directly to this anode. Spaced around the rim of the chamber are cylindrical cavities. The cavities are open along their length and connect the common cavity space. As electrons sweep past these openings, they induce a resonant, high-frequency radio field in the cavity, which in turn causes the electrons to bunch into groups. A portion of this field is extracted with a short antenna that is connected to a waveguide (a metal tube usually of rectangular cross section). The waveguide directs the extracted RF energy to the load, which may be a cooking chamber in a microwave oven or a high-gain antenna in the case of radar.

 
A cross-sectional diagram of a resonant cavity magnetron. Magnetic field is perpendicular to the plane of the diagram.

The sizes of the cavities determine the resonant frequency, and thereby the frequency of emitted microwaves. However, the frequency is not precisely controllable. This is not a problem in uses such as heating, or in some forms of radar where the receiver can be synchronized with an imprecise magnetron frequency. Where precise frequencies are needed, other devices such as the klystron are used.

The magnetron is a fairly efficient device. In a microwave oven, for instance, an 1100 watt input will generally create about 700 watts of microwave energy, an efficiency of around 65%. (The high-voltage and the properties of the cathode determine the power of a magnetron.) Instead of a magnetron, transistors can be used to provide microwave power; transistors typically operate at around 25 to 30% efficiency. Transistors are used in roles which require a wide range and/or stable range of frequencies. Thus the magnetron, having a higher efficiency, remains in widespread use in roles which require high power, but where precise frequency control is unimportant.

Applications edit

 
Magnetron with magnet in its mounting box. The horizontal plates form a Heatsink, cooled by airflow from a fan

Radar edit

In radar devices the waveguide is connected to an antenna. The magnetron is operated with very short pulses of applied voltage, resulting in a short pulse of high power microwave energy being radiated. As in all radar systems, the radiation reflected off a target is analyzed to produce a radar map on a screen.

Several characteristics of the magnetron's power output conspire to make radar use of the device somewhat problematic. The first of these factors is the magnetron's inherent instability in its transmitter frequency. This instability is noted not only as a frequency shift from one pulse to the next, but also a frequency shift within an individual transmitter pulse. The second factor is that the energy of the transmitted pulse is spread over a wide frequency spectrum, which makes necessary its receiver to have a corresponding wide selectivity. This wide selectivity permits ambient electrical noise to be accepted into the receiver, thus obscuring somewhat the received radar echos, thereby reducing overall radar performance. The third factor, depending on application, is the potential radiation hazard caused by the use of high power electromagnetic radiation. In some applications, for example a marine radar mounted on a recreational vessel, a radar with a magnetron output of 2 to 4 kilowatts is often found mounted very near an area occupied by crew or passengers. In practical use, these factors have been overcome, or merely accepted, and there are today thousands of magnetron aviation and marine radar units in service. Recent advances in aviation weather avoidance radar and in marine radar have successfully implemented solid-state transmitters that eliminate the magnetron entirely.

Heating edit

In microwave ovens the waveguide leads to a radio frequency-transparent port into the cooking chamber. It is important that there is food in the oven when it is operated so that these waves are absorbed, rather than reflecting into the waveguide where the intensity of standing waves can cause arcing. The arcing, if allowed to occur for long periods, will destroy the magnetron. If a very small object is being microwaved, it is recommended that a glass of water be added as an energy sink, although care must be taken not to "superheat" the water.

Lighting edit

In microwave-excited lighting systems, such as Sulphur Lamps, a magnetron provides the microwave field that is passed through a waveguide to the lighting cavity containing the light-emitting substance (e.g. Sulfur, metal halides etc.)

History edit

The oscillation of magnetrons was first observed and noted by Augustin Žáček, professor at the Charles University, Prague in the Czech Republic, although the first simple, two-pole magnetrons were developed in the 1920s by Albert Hull at General Electric's Research Laboratories (Schenectady, New York), as an outgrowth of his work on the magnetic control of vacuum tubes in an attempt to work around the patents held by Lee De Forest on electrostatic control. The two-pole magnetron, also known as a split-anode magnetron, had relatively low efficiency. The cavity version (properly referred to as a resonant-cavity magnetron) proved to be far more useful.

There was an urgent need during radar development in World War II for a high-power microwave generator that worked in shorter wavelengths—around 10 cm (3 GHz) rather than 150 cm—(200 MHz) available from tube-based generators of the time. It was known that a multi-cavity resonant magnetron had been developed and patented in 1935 by Hans Hollmann in Berlin.[1] However, the German military considered its frequency drift to be undesirable and based their radar systems on the klystron instead. It was primarily for this reason that German night fighter radars were not a match for their British counterparts.

In 1940, at the University of Birmingham in the UK, John Randall and Harry Boot produced a working prototype similar to Hollman's cavity magnetron, but added liquid cooling and a stronger cavity. Randall and Boot soon managed to increase its power output 100 fold. Instead of giving up on the magnetron due to its frequency inaccuracy, they sampled the output signal and synced their receiver to whatever frequency was actually being generated. James Sayers (born 1912) worked with Randall and Boot on the development of the cavity magnetron.[2] Born on a farm in Corkey, Co. Antrim, Northern Ireland, he built a water wheel powering a generator to provide electricity to the farm as a teenager. Later in World War II, he worked on the Manhattan Project in Los Alamos.

Because France had just fallen to the Nazis and Britain had no money to develop the magnetron on a massive scale, Churchill agreed that Sir Henry Tizard should offer the magnetron to the Americans in exchange for their financial and industrial help. An early 6 kW version, built in England by the GEC Research Laboratories, Wembley, London, was given to the US government in September 1940. It was later described as "the most valuable cargo ever brought to our shores" (see Tizard Mission). At the time the most powerful equivalent microwave producer available in the US (a klystron) had a power of only ten watts. The cavity magnetron was widely used during World War II in microwave radar equipment and is often credited with giving Allied radar a considerable performance advantage over German and Japanese radars, thus directly influencing the outcome of the war.

By September 1940, the Massachusetts Institute of Technology had set up a secret laboratory to develop the cavity magnetron delivered to the Americans by the Tizard mission into a viable radar. Two months later, it was in mass production, and by early 1941, portable airborne radar were being installed into American and British planes.[3] This was codenamed H2S, and was in part developed by Alan Blumlein.

Short-wave, centimetric radar, which was made possible by the cavity magnetron, allowed for the detection of much smaller objects and the use of much smaller antennas. The combination of the small-cavity magnetron, small antennas, and high resolution allowed small, high quality radars to be installed in aircraft. They could be used by maritime patrol aircraft to detect objects as small as a submarine periscope, which allowed aircraft to attack and destroy submerged submarines which had previously been undetectable from the air. Centimetric contour mapping radars like H2S improved the accuracy of Allied bombers used in the strategic bombing campaign. Centimetric gun-laying radars were likewise far more accurate than the older technology. They made the big-gunned Allied battleships more deadly and, along with the newly developed proximity fuse, made anti-aircraft guns much more dangerous to attacking aircraft. The two coupled together and used by anti-aircraft batteries, placed along the flight path of German V-1 flying bombs on their way to London, are credited with destroying many of the flying bombs before they reached their target.

Since then, many millions of cavity magnetrons have been manufactured; some for radar, but the vast majority for microwave ovens. The use in radar itself has dwindled to some extent, as more accurate signals have generally been needed and developers have moved to klystron and traveling-wave tube systems for these needs.

Health hazards edit

 
Caution: radiowaves hazard

Among more speculative hazards, at least one in particular is well known and documented. As the lens of the eye has no cooling blood flow, it is particularly prone to overheating when exposed to microwave radiation. This heating can in turn lead to a higher incidence of cataracts in later life.[citation needed] A microwave oven with a warped door or poor microwave sealing can be hazardous.

There is also a considerable electrical hazard around magnetrons, as they require a high voltage power supply. Operating a magnetron with the protective covers removed and interlocks bypassed should therefore be avoided.

Some magnetrons have beryllium oxide (beryllia) ceramic insulators, which is dangerous if crushed and inhaled, or otherwise ingested. Single or chronic exposure can lead to berylliosis, an incurable lung condition. In addition, beryllia is listed as a confirmed human carcinogen by the IARC; therefore, broken ceramic insulators or magnetrons should not be directly handled.

See also edit

  • Cyclotron – An atomic accelerator that also directs particles in a spiral with a transverse magnetic field.
  • Klystron – A device for amplifying or generating microwaves with greater precision and control than is available from the magnetron.
  • Traveling-wave tube – Another microwave amplifier device, capable of greater bandwidths than a klystron.
  • Crossed-field amplifier – A device combining characteristics of magnetrons and TWTs, resulting in a high-powered, narrow-band amplifier.
  • Backward wave oscillator - A wide-band tunable oscillator, M or O-type
  • Free-electron laser – A device for amplifying or generating microwaves, infrared light, UV, and X-Rays.
  • Maser – A device for generating microwaves that produces a very low noise and stable signal, a predecessor of the laser.
  • Laser – A device for generating coherent light, an evolution of the maser.
  • Sputter deposition – An important industrial application using the same principle of crossed electric and magnetic fields as cavity magnetrons.

References edit

  1. ^ US 2123728  Hans Erich Hollmann/Telefunken GmbH: „Magnetron“ filed November 27, 1935
  2. ^ Early Centimetric Ground Radars - A Personal Reminiscence
  3. ^ Angela Hind (February 5 2007). "Briefcase 'that changed the world'". BBC News. Retrieved 2007-08-16. {{cite news}}: Check date values in: |date= (help)
  • Morgan, T.J. (1960). RADAR. London: F. Muller.
  • Rowe, A.P. (1948). One Story of Radar. Cambridge University Press.
  • Saward, Dudley (1984). Bernard Lovell: A Biography. London: Robert Hale. ISBN 0-7090-1745-6.
  • Conant, Jennet (2002). Tuxedo Park: a Wall Street tycoon and the secret palace of science that changed the course of World War II . Waterville, Me. : Thorndike Press. ISBN 0-7862-4814-9.
  • Buderi, Robert (1996). The Invention that Changed the World: How a Small Group of Radar Pioneers Won the Second World War and Launched a Technological Revolution. New York: Simon and Schuster. ISBN 0-684-81021-2.

External links edit

Information
Patents
  • US 2123728  Hans Erich Hollmann/Telefunken GmbH: „Magnetron“ filed November 27, 1935
  • US 2315313  Buchholz, H. (1943). Cavity resonator
  • US 2357313  Carter, P.S. (1944). High frequency resonator and circuit therefor
  • US 2357314  Carter, P.S. (1944). Cavity resonator circuit
  • US 2408236  Spencer, P.L. (1946). Magnetron casing
  • US 2444152  Carter, P.S. (1948). Cavity resonator circuit
  • US 2611094  Rex, H.B. (1952). Inductance-capacitance resonance circuit
  • GB 879677  Dexter, S.A. (1959). Valve oscillator circuits; radio frequency output couplings

Category:Electrical components Category:Vacuum tubes Category:World War II British electronics Category:World War II American electronics Category:Microwave technology Category:Radar