User:Movingscience123/sandbox

Principles edit

Adaptation Through Exercise edit

 
Summary of adaptations to long-term aerobic and anaerobic exercise. Aerobic exercise can cause several central cardiovascular adaptations, including an increase in stroke volume (SV)[1] and maximal aerobic capacity (VO2 Max),[1][2] as well as a decrease in resting heart rate (RHR).[3][4][5] Long-term adaptations to resistance training, the most common form of anaerobic exercise, include muscular hypertrophy,[6][7] an increase in the physiologic cross-sectional area (PCSA) of (a) muscle(s), and an increase in neural drive,[8][9] both of which lead to increased muscular strength.[10] Notice that the neural adaptation begins more quickly and plateaus prior to the hypertrophic response.[11][12]

Adaptation through exercise is a key principle of kinesiology that relates to improved fitness in athletes as well as health and wellness in clinical populations. Exercise is a simple and established intervention for many movement disorders and musculoskeletal conditions due to the neuroplasticity of the brain[13] and the adaptability of the musculoskeletal system.[8][9][10] Therapeutic exercise has been shown to improve neuromotor control and motor capabilities in both normal[14] and pathological populations.[2][15]

There are many different types of exercise interventions that can be applied in kinesiology to athletic, normal, and clinical populations. Aerobic exercise interventions help to improve cardiovascular endurance.[16] Anaerobic strength training programs can increase muscular strength,[9] power,[17] and lean body mass.[18] Decreased risk of falls and increased neuromuscular control can be attributed to balance intervention programs.[19] Flexibility programs can increase functional range of motion and reduce the risk of injury.[20]

As a whole, exercise programs can reduce symptoms of depression[21] and risk of cardiovascular[22] and metabolic diseases.[23] Additionally, they can help to improve quality of life,[24] sleeping habits,[21] immune system function,[25] and body composition.[18]

Finally, the study of the physiologic responses to physical exercise and their therapeutic applications is known as exercise physiology, which is a major research focus within kinesiology.

Neuroplasticity edit

 
Adaptive plasticity along with practice in three levels. In behavior level, performance (e.g., successful rate, accuracy) improved after practice.[26][27] In cortical level, motor representation areas of the acting muscles enlarged; functional connectivity between primary motor cortex (M1) and supplementary motor area (SMA) is strengthened.[28][29][30][31][32][33][34] In neuronal level, the number of dendrites and neurotransmitter increase with practice.[35][36][29]

Neuroplasticity is also a key scientific principle used in kinesiology to describe how movement and changes in the brain are related. The human brain adapts and acquires new motor skills based on this principle, which includes both adaptive and maladaptive brain changes.

Adaptive Plasticity

Recent empirical evidence indicates the significant impact of physical activity on brain function; for example, greater amounts of physical activity are associated with enhanced cognitive function in older adults.[37] The effects of physical activity can be distributed throughout the whole brain, such as higher gray matter density and white matter integrity after exercise training,[38][39] and/or on specific brain areas, such as greater activation in prefrontal cortex and hippocampus.[40] Neuroplasticity is also the underlying mechanism of skill acquisition. For example, after long-term training, pianists showed greater gray matter density in sensorimotor cortex and white matter integrity in the internal capsule compared to non-musicians.[41][42]

Mal-Adaptive Plasticity

Maladaptive plasticity is defined as the neuroplasticity with negative effects or detrimental consequences in behavior.[43][44] Movement abnormalities may occur among individuals with and without brain injuries due to abnormal remodeling in central nervous system.[45][31] Learned non-use is an example commonly seen among patients with brain damages, such as stroke. Patients with stroke learned to suppress paretic limb movement after unsuccessful experience in paretic hand use; this may cause decreased neuronal activation at adjacent areas of the infarcted motor cortex.[46][47]

There are many types of therapies that are designed to overcome maladaptive plasticity in clinic and research, such as constraint-induced movement therapy (CIMT), body weight support treadmill training (BWSTT) and virtual reality therapy. These interventions are shown to enhance motor function in paretic limbs [48][49][50] and stimulate cortical reorganization[51][52][53] in patients with brain damages.

Motor Redundancy edit

Motor redundancy is a widely-used concept in kinesiology and motor control which states that, for any task the human body can perform, there are effectively an unlimited number of ways the nervous system could achieve that task (ref). This redundancy appears at multiple levels in the chain of motor execution:

  • Kinematic redundancy means that for a desired location of the endpoint (e.g. the hand or finger), there are many configurations of the joints that would produce the same endpoint location in space.
  • Muscle redundancy means that the same net joint torque could be generated by many different relative contributions of individual muscles.
  • Motor unit redundancy means that for the same net muscle force could be generated by many different relative contributions of motor units within that muscle.

The concept of motor redundancy is explored in numerous studies (ref), usually with the goal of describing the relative contribution of a set of motor elements (e.g. muscles) in various human movements, and how these contributions can be predicted from a comprehensive theory. Two distinct (but not incompatible) theories have emerged for how the nervous system coordinates redundant elements: simplification and optimization. In the simplification theory, complex movements and muscle actions are constructed from simpler ones, often known as primitives or synergies, resulting in a simpler system for the brain to control (ref). In the optimization theory, motor actions arise from the minimization of a control parameter, such as the energetic cost of movement (ref).

References edit

  1. ^ a b Wang, E.; Næss, M. S.; Hoff, J.; Albert, T. L.; Pham, Q.; Richardson, R. S.; Helgerud, J. (2013 Nov 16). "Exercise-training-induced changes in metabolic capacity with age: the role of central cardiovascular plasticity". Age (Dordrecht, Netherlands). 36 (2): 665–676. doi:10.1007/s11357-013-9596-x. PMC 4039249. PMID 24243396. {{cite journal}}: Check date values in: |date= (help)
  2. ^ a b Potempa, K.; Lopez, M.; Braun, L. T.; Szidon, J. P.; Fogg, L.; Tincknell, T. (1995 Jan). "Physiological outcomes of aerobic exercise training in hemiparetic stroke patients". Stroke; A Journal of Cerebral Circulation. 26 (1): 101–5. doi:10.1161/01.str.26.1.101. PMID 7839377. {{cite journal}}: Check date values in: |date= (help)
  3. ^ Wilmore, J. H.; Stanforth, P. R.; Gagnon, J.; Leon, A. S.; Rao, D. C.; Skinner, J. S.; Bouchard, C. (1996 Jul). "Endurance exercise training has a minimal effect on resting heart rate: the HERITAGE Study". Medicine and Science in Sports and Exercise. 28 (7): 829–35. doi:10.1097/00005768-199607000-00009. PMID 8832536. {{cite journal}}: Check date values in: |date= (help)
  4. ^ Carter, J. B.; Banister, E. W.; Blaber, A. P. (2003). "Effect of endurance exercise on autonomic control of heart rate". Sports Medicine (Auckland, N.Z.). 33 (1): 33–46. doi:10.2165/00007256-200333010-00003. PMID 12477376.
  5. ^ Chen, Chao‐Yin; Dicarlo, Stephen E. (1998). "Endurance exercise training‐induced resting Bradycardia: A brief review". Sports Medicine, Training and Rehabilitation. 8 (1): 37–77. doi:10.1080/15438629709512518. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: date and year (link)
  6. ^ Crewther, BT (2013 Feb). "The effects of a resistance-training program on strength, body composition and baseline hormones in male athletes training concurrently for rugby union 7's". The Journal of Sports Medicine and Physical Fitness. 53 (1): 34–41. PMID 23470909. {{cite journal}}: Check date values in: |date= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  7. ^ Schoenfeld, BJ (2013 Jun). "Postexercise hypertrophic adaptations: a reexamination of the hormone hypothesis and its applicability to resistance training program design". Journal of Strength and Conditioning Research / National Strength & Conditioning Association. 27 (6): 1720–30. doi:10.1519/JSC.0b013e31828ddd53. PMID 23442269. {{cite journal}}: Check date values in: |date= (help)
  8. ^ a b Dalgas, U.; Stenager, E.; Lund, C.; Rasmussen, C.; Petersen, T.; Sørensen, H.; Ingemann-Hansen, T.; Overgaard, K. (2013 Jul). "Neural drive increases following resistance training in patients with multiple sclerosis". Journal of Neurology. 260 (7): 1822–32. doi:10.1007/s00415-013-6884-4. PMID 23483214. {{cite journal}}: Check date values in: |date= (help)
  9. ^ a b c Staron, R. S.; Karapondo, D. L.; Kraemer, W. J.; Fry, A. C.; Gordon, S. E.; Falkel, J. E.; Hagerman, F. C.; Hikida, R. S. (1994 Mar). "Skeletal muscle adaptations during early phase of heavy-resistance training in men and women". Journal of Applied Physiology (Bethesda, Md. : 1985). 76 (3): 1247–55. doi:10.1152/jappl.1994.76.3.1247. PMID 8005869. {{cite journal}}: Check date values in: |date= (help)
  10. ^ a b Folland, J. P.; Williams, A. G. (2007). "The adaptations to strength training : morphological and neurological contributions to increased strength". Sports Medicine (Auckland, N.Z.). 37 (2): 145–68. doi:10.2165/00007256-200737020-00004. PMID 17241104.
  11. ^ Moritani, T.; Devries, H. A. (1979 Jun). "Neural factors versus hypertrophy in the time course of muscle strength gain". American Journal of Physical Medicine. 58 (3): 115–30. PMID 453338. {{cite journal}}: Check date values in: |date= (help)
  12. ^ Narici, M. V.; Roi, G. S.; Landoni, L.; Minetti, A. E.; Cerretelli, P. (1989). "Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps". European Journal of Applied Physiology and Occupational Physiology. 59 (4): 310–9. doi:10.1007/BF02388334. PMID 2583179.
  13. ^ Forrester, L. W.; Wheaton, L. A.; Luft, A. R. (2008). "Exercise-mediated locomotor recovery and lower-limb neuroplasticity after stroke". Journal of Rehabilitation Research and Development. 45 (2): 205–20. doi:10.1682/jrrd.2007.02.0034. PMID 18566939.
  14. ^ Roig, M.; Skriver, K.; Lundbye-Jensen, J.; Kiens, B.; Nielsen, J. B. (2012). "A single bout of exercise improves motor memory". PLOS ONE. 7 (9): e44594. doi:10.1371/journal.pone.0044594. PMC 3433433. PMID 22973462.
  15. ^ Hirsch, M. A.; Farley, B. G. (2009 Jun). "Exercise and neuroplasticity in persons living with Parkinson's disease". European Journal of Physical and Rehabilitation Medicine. 45 (2): 215–29. PMID 19532109. {{cite journal}}: Check date values in: |date= (help)
  16. ^ Schjerve, I. E.; Tyldum, G. A.; Tjønna, A. E.; Stølen, T.; Loennechen, J. P.; Hansen, H. E.; Haram, P. M.; Heinrich, G.; Bye, A.; Najjar, S. M.; Smith, G. L.; Slørdahl, S. A.; Kemi, O. J.; Wisløff, U. (2008 Nov). "Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults". Clinical Science (London, England : 1979). 115 (9): 283–93. doi:10.1042/CS20070332. PMID 18338980. {{cite journal}}: Check date values in: |date= (help)
  17. ^ Jozsi, A. C.; Campbell, W. W.; Joseph, L.; Davey, S. L.; Evans, W. J. (1999 Nov). "Changes in power with resistance training in older and younger men and women". The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 54 (11): M591-6. doi:10.1093/gerona/54.11.m591. PMID 10619323. {{cite journal}}: Check date values in: |date= (help)
  18. ^ a b Campbell, W. W.; Crim, M. C.; Young, V. R.; Evans, W. J. (1994 Aug). "Increased energy requirements and changes in body composition with resistance training in older adults". The American Journal of Clinical Nutrition. 60 (2): 167–75. doi:10.1093/ajcn/60.2.167. PMID 8030593. {{cite journal}}: Check date values in: |date= (help) Cite error: The named reference "ExerciseBodyComp" was defined multiple times with different content (see the help page).
  19. ^ El-Khoury, F.; Cassou, B.; Charles, M. A.; Dargent-Molina, P. (2013 Oct 29). "The effect of fall prevention exercise programmes on fall induced injuries in community dwelling older adults: systematic review and meta-analysis of randomised controlled trials". BMJ (Clinical Research Ed.). 347: f6234. doi:10.1136/bmj.f6234. PMC 3812467. PMID 24169944. {{cite journal}}: Check date values in: |date= (help)
  20. ^ Hartig, D. E.; Henderson, J. M. (1999 Mar-Apr). "Increasing hamstring flexibility decreases lower extremity overuse injuries in military basic trainees". The American Journal of Sports Medicine. 27 (2): 173–6. doi:10.1177/03635465990270021001. PMID 10102097. {{cite journal}}: Check date values in: |date= (help)
  21. ^ a b Brand, S.; Gerber, M.; Beck, J.; Hatzinger, M.; Pühse, U.; Holsboer-Trachsler, E. (2010 Feb). "High exercise levels are related to favorable sleep patterns and psychological functioning in adolescents: a comparison of athletes and controls". The Journal of Adolescent Health : Official Publication of the Society for Adolescent Medicine. 46 (2): 133–41. doi:10.1016/j.jadohealth.2009.06.018. PMID 20113919. {{cite journal}}: Check date values in: |date= (help)
  22. ^ Cederberg, H.; Mikkola, I.; Jokelainen, J.; Laakso, M.; Härkönen, P.; Ikäheimo, T.; Laakso, M.; Keinänen-Kiukaanniemi, S. (2011 Jun). "Exercise during military training improves cardiovascular risk factors in young men". Atherosclerosis. 216 (2): 489–95. doi:10.1016/j.atherosclerosis.2011.02.037. PMID 21402378. {{cite journal}}: Check date values in: |date= (help)
  23. ^ Borghouts, L. B.; Keizer, H. A. (2000 Jan). "Exercise and insulin sensitivity: a review". International Journal of Sports Medicine. 21 (1): 1–12. doi:10.1055/s-2000-8847. PMID 10683091. {{cite journal}}: Check date values in: |date= (help)
  24. ^ Tsai, J. C.; Yang, H. Y.; Wang, W. H.; Hsieh, M. H.; Chen, P. T.; Kao, C. C.; Kao, P. F.; Wang, C. H.; Chan, P. (2004 Apr). "The beneficial effect of regular endurance exercise training on blood pressure and quality of life in patients with hypertension". Clinical and Experimental Hypertension (New York, N.Y. : 1993). 26 (3): 255–65. doi:10.1081/ceh-120030234. PMID 15132303. {{cite journal}}: Check date values in: |date= (help)
  25. ^ Nieman, DC (1994 Oct). "Exercise, infection, and immunity". International Journal of Sports Medicine. 15 (Suppl 3): S131-41. doi:10.1055/s-2007-1021128. PMID 7883395. {{cite journal}}: Check date values in: |date= (help)
  26. ^ Marston, A (1967 May). "Self-reinforcement and external reinforcement in visual-motor learning". Journal of Experimental Psychology. 74 (1): 93–8. doi:10.1037/h0024505. PMID 6032584. {{cite journal}}: Check date values in: |date= (help)
  27. ^ Marchant, David C.; Clough, Peter J.; Crawshaw, Martin; Levy, Andrew (2009). "Novice motor skill performance and task experience is influenced by attentional focusing instructions and instruction preferences". International Journal of Sport and Exercise Psychology. 7 (4): 488–502. doi:10.1080/1612197X.2009.9671921. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: date and year (link)
  28. ^ Yoo, Kwangsun; Sohn, William S.; Jeong, Yong (2013). "Tool-use practice induces changes in intrinsic functional connectivity of parietal areas". Frontiers in Human Neuroscience. 7: 49. doi:10.3389/fnhum.2013.00049. PMC 3582314. PMID 23550165.{{cite journal}}: CS1 maint: date and year (link)
  29. ^ a b Dayan, Eran; Cohen, Leonardo G. (2011). "Neuroplasticity Subserving Motor Skill Learning". Neuron. 72 (3): 443–454. doi:10.1016/j.neuron.2011.10.008. PMC 3217208. PMID 22078504. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: date and year (link)
  30. ^ Nudo, R. J.; Wise, B. M.; Sifuentes, F.; Milliken, G. W. (1996 Jun 21). "Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct". Science (New York, N.Y.). 272 (5269): 1791–4. doi:10.1126/science.272.5269.1791. PMID 8650578. {{cite journal}}: Check date values in: |date= (help)
  31. ^ a b Nudo, R. J.; Milliken, G. W. (1996 May). "Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys". Journal of Neurophysiology. 75 (5): 2144–9. doi:10.1152/jn.1996.75.5.2144. PMID 8734610. {{cite journal}}: Check date values in: |date= (help)
  32. ^ Pascual-Leone, A (1995 Sep). "Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills". Journal of Neurophysiology. 74 (3): 1037–45. doi:10.1152/jn.1995.74.3.1037. PMID 7500130. {{cite journal}}: Check date values in: |date= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  33. ^ Liepert, J.; Terborg, C.; Weiller, C. (1999 Apr). "Motor plasticity induced by synchronized thumb and foot movements". Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale. 125 (4): 435–9. doi:10.1007/s002210050700. PMID 10323289. {{cite journal}}: Check date values in: |date= (help)
  34. ^ Eickhoff, S. B.; Dafotakis, M.; Grefkes, C.; Shah, N. J.; Zilles, K.; Piza-Katzer, H. (2008 Jul). "Central adaptation following heterotopic hand replantation probed by fMRI and effective connectivity analysis". Experimental Neurology. 212 (1): 132–44. doi:10.1016/j.expneurol.2008.03.025. PMID 18501895. {{cite journal}}: Check date values in: |date= (help)
  35. ^ Johansson, B. B. (1 January 2000). "Brain Plasticity and Stroke Rehabilitation : The Willis Lecture". Stroke. 31 (1): 223–230. doi:10.1161/01.STR.31.1.223. PMID 10625741.
  36. ^ Gomez-Pinilla, F. (1 November 2002). "Voluntary Exercise Induces a BDNF-Mediated Mechanism That Promotes Neuroplasticity". Journal of Neurophysiology. 88 (5): 2187–2195. doi:10.1152/jn.00152.2002. PMID 12424260.
  37. ^ Mora, F (2013 Mar). "Successful brain aging: plasticity, environmental enrichment, and lifestyle". Dialogues in Clinical Neuroscience. 15 (1): 45–52. doi:10.31887/DCNS.2013.15.1/fmora. PMC 3622468. PMID 23576888. {{cite journal}}: Check date values in: |date= (help)
  38. ^ Hopkins, M. E.; Bucci, D. J. (2010 Sep). "BDNF expression in perirhinal cortex is associated with exercise-induced improvement in object recognition memory". Neurobiology of Learning and Memory. 94 (2): 278–84. doi:10.1016/j.nlm.2010.06.006. PMC 2930914. PMID 20601027. {{cite journal}}: Check date values in: |date= (help)
  39. ^ Thomas, C.; Baker, C. I. (2013 Jun). "Teaching an adult brain new tricks: a critical review of evidence for training-dependent structural plasticity in humans". NeuroImage. 73: 225–36. doi:10.1016/j.neuroimage.2012.03.069. PMID 22484409. {{cite journal}}: Check date values in: |date= (help)
  40. ^ Erickson, K. I.; Weinstein, A. M.; Lopez, O. L. (2012 Nov). "Physical activity, brain plasticity, and Alzheimer's disease". Archives of Medical Research. 43 (8): 615–21. doi:10.1016/j.arcmed.2012.09.008. PMC 3567914. PMID 23085449. {{cite journal}}: Check date values in: |date= (help)
  41. ^ Han, Y.; Yang, H.; Lv, Y. T.; Zhu, C. Z.; He, Y.; Tang, H. H.; Gong, Q. Y.; Luo, Y. J.; Zang, Y. F.; Dong, Q. (2009 Jul 31). "Gray matter density and white matter integrity in pianists' brain: a combined structural and diffusion tensor MRI study". Neuroscience Letters. 459 (1): 3–6. doi:10.1016/j.neulet.2008.07.056. PMID 18672026. {{cite journal}}: Check date values in: |date= (help)
  42. ^ Pantev, C.; Engelien, A.; Candia, V.; Elbert, T. (25 January 2006). "Representational Cortex in Musicians". Annals of the New York Academy of Sciences. 930 (1): 300–314. doi:10.1111/j.1749-6632.2001.tb05740.x.
  43. ^ Cramer, S. C.; et al. (2011 Jun). "Harnessing neuroplasticity for clinical applications". Brain : A Journal of Neurology. 134 (Pt 6): 1591–609. doi:10.1093/brain/awr039. PMC 3102236. PMID 21482550. {{cite journal}}: Check date values in: |date= (help)
  44. ^ Nahum, A.; Sznajder, J. I.; Solway, J.; Wood, L. D.; Schumacker, P. T. (1988 May). "Pressure, flow, and density relationships in airway models during constant-flow ventilation". Journal of Applied Physiology (Bethesda, Md. : 1985). 64 (5): 2066–73. doi:10.1152/jappl.1988.64.5.2066. PMID 3391905. {{cite journal}}: Check date values in: |date= (help)
  45. ^ Kadota, H.; Nakajima, Y.; Miyazaki, M.; Sekiguchi, H.; Kohno, Y.; Amako, M.; Arino, H.; Nemoto, K.; Sakai, N. (2010 Jul). "An fMRI study of musicians with focal dystonia during tapping tasks". Journal of Neurology. 257 (7): 1092–8. doi:10.1007/s00415-010-5468-9. PMID 20143109. {{cite journal}}: Check date values in: |date= (help)
  46. ^ Taub, E.; Crago, J. E.; Burgio, L. D.; Groomes, T. E.; Cook Ew, 3rd; Deluca, S. C.; Miller, N. E. (1994 Mar). "An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping". Journal of the Experimental Analysis of Behavior. 61 (2): 281–93. doi:10.1901/jeab.1994.61-281. PMC 1334416. PMID 8169577. {{cite journal}}: Check date values in: |date= (help)CS1 maint: numeric names: authors list (link)
  47. ^ Jones, T. A.; Allred, R. P.; Jefferson, S. C.; Kerr, A. L.; Woodie, D. A.; Cheng, S. Y.; Adkins, D. L. (2013 Jun). "Motor system plasticity in stroke models: intrinsically use-dependent, unreliably useful". Stroke; A Journal of Cerebral Circulation. 44 (6 Suppl 1): S104-6. doi:10.1161/STROKEAHA.111.000037. PMC 3727618. PMID 23709698. {{cite journal}}: Check date values in: |date= (help)
  48. ^ Macko, R. F.; Smith, G. V.; Dobrovolny, C. L.; Sorkin, J. D.; Goldberg, A. P.; Silver, K. H. (2001 Jul). "Treadmill training improves fitness reserve in chronic stroke patients". Archives of Physical Medicine and Rehabilitation. 82 (7): 879–84. doi:10.1053/apmr.2001.23853. PMID 11441372. {{cite journal}}: Check date values in: |date= (help)
  49. ^ Wolf, S. L.; Winstein, C. J.; Miller, J. P.; Taub, E.; Uswatte, G.; Morris, D.; Giuliani, C.; Light, K. E.; Nichols-Larsen, D.; EXCITE Investigators (2006 Nov 1). "Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial". JAMA : The Journal of the American Medical Association. 296 (17): 2095–104. doi:10.1001/jama.296.17.2095. PMID 17077374. {{cite journal}}: Check date values in: |date= (help)
  50. ^ Turolla, A.; Dam, M.; Ventura, L.; Tonin, P.; Agostini, M.; Zucconi, C.; Kiper, P.; Cagnin, A.; Piron, L. (2013 Aug 1). "Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial". Journal of Neuroengineering and Rehabilitation. 10: 85. doi:10.1186/1743-0003-10-85. PMC 3734026. PMID 23914733. {{cite journal}}: Check date values in: |date= (help)CS1 maint: unflagged free DOI (link)
  51. ^ Orihuela-Espina, F.; Fernández Del Castillo, I.; Palafox, L.; Pasaye, E.; Sánchez-Villavicencio, I.; Leder, R.; Franco, J. H.; Sucar, L. E. (2013 May-Jun). "Neural reorganization accompanying upper limb motor rehabilitation from stroke with virtual reality-based gesture therapy". Topics in Stroke Rehabilitation. 20 (3): 197–209. doi:10.1310/tsr2003-197. PMID 23841967. {{cite journal}}: Check date values in: |date= (help)
  52. ^ Szaflarski, J. P.; Page, S. J.; Kissela, B. M.; Lee, J. H.; Levine, P.; Strakowski, S. M. (2006 Aug). "Cortical reorganization following modified constraint-induced movement therapy: a study of 4 patients with chronic stroke". Archives of Physical Medicine and Rehabilitation. 87 (8): 1052–8. doi:10.1016/j.apmr.2006.04.018. PMID 16876549. {{cite journal}}: Check date values in: |date= (help)
  53. ^ Yang, Y. R.; Chen, I. H.; Liao, K. K.; Huang, C. C.; Wang, R. Y. (2010 Apr). "Cortical reorganization induced by body weight-supported treadmill training in patients with hemiparesis of different stroke durations". Archives of Physical Medicine and Rehabilitation. 91 (4): 513–8. doi:10.1016/j.apmr.2009.11.021. PMID 20382280. {{cite journal}}: Check date values in: |date= (help)