Satellite image of the island of Borneo on 19 August 2002, showing smoke from burning peat swamp forests

Peat swamp forests are tropical moist forests where waterlogged soil prevents dead leaves and wood from fully decomposing. Over time, this creates a thick layer of acidic peat[1]. Large areas of these forests are being logged at high rates.

Peat swamp forests are typically surrounded by lowland rain forests on better-drained soils, and by brackish or salt-water mangrove forests near the coast.

Tropical peatlands, which coexist with swamp forests within the tropical and subtropical moist broadleaf forests biome, store and accumulate vast amounts of carbon as soil organic matter - much more than natural forests contain. Their stability has important implications for climate change; they are among the largest near-surface reserves of terrestrial organic carbon.[2] Peat swamp forests, which have ecological importance, are one of the most threatened, yet least studied and most poorly understood biotypes.

Since the 1970s, peat swamp forest deforestation and drainage have increased exponentially.[3] In addition, El Niño Southern Oscillation (ENSO) drought and large-scale fires are accelerating peatland devastation. This destruction enhances the decomposition of soil and organic matter, increasing the carbon release to the atmosphere as carbon dioxide. This phenomenon suggests that tropical peatlands have already become a large carbon-dioxide source, but related data and information is limited.[4]

Tropical peat swamp forests are home to thousands of animals and plants, including many rare and critically endangered species such as the orangutan and Sumatran tiger whose habitats are threatened by peatland deforestation.[5]

Distribution edit

Tropical peat ecosystem are found in three regions, i.e. Central America, Africa and South East Asia[6] with about 62% of the world’s tropical peat lands occur in the Indomalaya region (80% in Indonesia, 11% in Malaysia, 6% in Papua New Guinea, and pockets in Brunei, Vietnam, the Philippines, and Thailand).[7][8] Peat in Indonesia is distributed over three islands, Sumatra (8.3 million ha), Kalimantan (6.3 million ha) and Papua (4.6 million ha) [9].

Formation edit

Tropical peat formed on low lying areas, such as deltas, floodplains or shallow oxbow lakes. The formation process usually follows hydrosere successional steps[1] [10] where the ponds or flooded area eutrophicated by water plants, then transform into waterlogged swamp with grasses or shrubs, and eventually formed a forest that keep growing and accumulating [10]. Peat located on the fringing or in between dome might form through lateral expansion[10] [11]. This peat accumulation often forms a convex shape called dome, which could rise up to 4 m on coastal peat and up to 18 m on inland peat[1]. At the beginning of its formation, peat is largely topogenous or minerotrophic, receiving high nutrient input from rivers or groundwaters. As the peat thicken and the dome elevated, the top of the peat is no longer affected by the river or groundwater input, instead they are becoming ombrotrophic, exclusively gain water from the precipitation [9][10] Input only from the rain causing the low nutrient and mineral content especially calcium, thus peat becomes highly acidic and only able to support low biodiversity and stunted forest.

Inland and coastal peat differ greatly on their age, where coastal peat formed during mid Holocene (ca 8 ka BP) [12] and inland peat formed much earlier in Late Pleistocene (> 26 ka BP) [13]. Coastal peat formation is highly affected by the sea level rise with strong accumulation around 8-4 ka BP when the El Nino is less intense [14] Because Sunda shelf is tectonically stable, the sea level rise in this area only related with the eustatic sea level, and during the glacial period the Karimata Strait dried, causing Asian Peninsula, Sumatra, Kalimantan and Java connected [15]. After the Last Glacial Maximum, this coastline moved inland as the ice sheet melted, and finally reached the level of  modern coastline around 8.5 ka BP. Thus, the oldest age of costal peat in this region is less than 8.5 BP [16]

Inland peat formation is highly affected by climate with little or no effect of sea level rise because it located around 15-20 m above sea level, where the most recent record of higher sea level was during ca 125 ka BP with 6 m above modern sea level[17]. Peat cores from Sebangau, South Kalimantan show slows growth of 0.04mm/y around 13 ka BP when the climate is colder, then accelerated to 2.55mm/y around 9.9 ka BP in warmer Early Holocene, then slower again to 0.23-0.15mm/y during intense El Nino [18]. Similar pattern is observed in cores from Sentarum, West Kalimantan, where the peat shows slower growth around 28-16 ka BP, 13-3 ka BP and on 5-3 ka BP [19]. While the slower growth from 28-16 ka BP and 5-3 ka BP is explained by drier climate during this period due to Heinrich Event I and the emergence of El Nino [20][21].

Ecology edit

Peat swamp forest are unusual ecosystems, with trees up to 70 m high - vastly different from the peat lands of the north temperate and boreal zones (which are dominated by Sphagnum mosses, grasses, sedges and shrubs) [10]. The spongy, unstable, waterlogged, anaerobic beds of peat can be up to 20 m deep with low pH (pH 2.9 – 4) and low nutrients, and the forest floor is seasonally flooded.[22] The water is stained dark brown by the tannins that leach from the fallen leaves and peat – hence the name blackwater swamps. During the dry season, the peat remains waterlogged and pools remain among the trees. Water level on the peat usually 20 cm below the surface [1], however, during severe El Nino, this water level might down to 40 cm below the surface and increase risk of burning [23]

Peat forest contains high amount of carbon due to its soil nature, categorized as histosols with characteristics of high organic material content (70-99%) [10][24]. This carbon pool is stabilized by the low temperature on temperate peat, and by the water logging on tropical peat. Disturbances that change the temperature or the water content of the peat will release this stored carbon into the atmosphere, exacerbating human-made climate change[14]. Estimation of carbon content of tropical peat ranges from 50 Gt C [14] to 88 Gt C [6].

In Indonesia edit

Peat formation is a natural carbon sink; carbon is withdrawn out of the system and converted into peat through biological activity. Peat swamp forests originally represented major ecosystems in Indonesia and ranged between 16.5–27 million hectares. In their original state, Indonesian peat swamp forests released between 0.01–0.03 Gt of carbon annually. In recent years, however, these important ecosystems have been reduced through deforestation, drainage, and conversion to agricultural lands and other activities. Their current status as carbon sequestering systems have thus also been reduced significantly. An understanding of the global importance of peat (and thus the urgency of maintaining peat swamp forests) and identifying alternative ways of making these areas productive in an environmentally sound and sustainable manner should have high priority among scientists and policy-makers alike.[25]

Peat Degradation edit

Over the past decade, under the Mega Rice Project (MRP), the government of Indonesia has drained over 1 million hectares of the Borneo peat swamp forests for conversion to agricultural land. Between 1996 and 1998, more than 4,000 kilometers of drainage and irrigation channels were dug, and deforestation accelerated in part through legal and illegal logging and in part through burning. The water channels, and the roads and railways built for legal forestry, opened up the region to illegal forestry. In the MRP area, forest cover dropped from 64.8% in 1991 to 45.7% in 2000, and clearance has continued since then. It appears that almost all the marketable trees have now been removed from the areas covered by the MRP. What happened was not what had been expected: the channels drained the peat forests rather than irrigating them. Where the forests had often flooded up to 2 meters deep in the rainy season, now their surface is dry at all times of the year. The Indonesian government has now abandoned the MRP.

A study for the European Space Agency found that up to 2.57 billion tons of carbon were released to the atmosphere in 1997 as a result of burning peat and vegetation in Indonesia. This is equivalent to 40% of the average annual global carbon emissions from fossil fuels, and contributed greatly to the largest annual increase in atmospheric CO2 concentration detected since records began in 1957.[2] Additionally, the 2002-3 fires released between 200 million to 1 billion tons of carbon into the atmosphere.

Indonesia is currently the world's third largest carbon emitter, to a large extent due to the destruction of its ancient peat swamp forests.

Indonesia contains 50% of tropical peat swamps and 10% of dry land in the world. They have the potential of playing an important role in mitigating global warming and climate change under the reducing emissions from deforestation and forest degradation (REDD) scheme. Rather than reducing deforestation - in terms of claiming carbon credits from REDD initiatives - peatland conservation and rehabilitation are more efficient undertakings, due to the much larger reduced emissions achievable per unit area and the much lower opportunity costs involved.[26]

Conservation & Preservation edit

Attempts to preserve tropical peat swamp forests have been minimal in comparison to the widespread impact and devastation of commercial logging; in Sarawak, logging is ongoing and planned to intensify in Brunei. One plan by the environmental NGO Borneo Orangutan Survival is to preserve the peat swamp forest of Mawas using a combination of carbon finance and debt-for-nature-swap. About 6% of the original peat-forest area is contained within protected areas, the largest of which are Tanjung Puting and Sabangau National Parks.

The main causes of deforestation in Indonesia continue to be palm oil business (see palm oil production in Indonesia) and illegal logging, ongoing in areas such as South Sumatra. A survey by the University of Muhammadiyah Palembang in 2008 estimated that in 25 years most of the natural forests will be depleted due to illegal logging. Projects by REDD are designed to tackle deforestation and protect forests from the encroachment of agriculture, benefitting biodiversity and improving the quality of the environment to surrounding villages.[27]

To counter the destruction of mangroves and unsustainable palm oil expansion in Indonesia's peatlands, organizations, such as Wetlands International, work with the Indonesian government to improve policies and spatial planning. They engage with the palm-oil industry, promoting best management practices in tropical peat swamp forests and ensuring the participation of local communities, who lack awareness about natural resource management. In the field, they work with communities to restore mangroves and peatlands.

Habitat disturbance caused by logging was shown to affect orangutan density within a mixed swamp forest. The presence of a very large, self-sustaining orangutan population in this region emphasizes the urgency for greater protection of Kalimantan's peat swamp forests in light of recent and rapid habitat degradation.[4]

In Malaysia edit

It has long been assumed that the peat underlying tropical peat swamp forests accumulates because the extreme conditions (waterlogged, nutrient poor, anaerobic and acidic) impede microbial activity. Studies in a tropical Malaysian peat swamp (North Selangor peat swamp forest) showed that although the sclerophyllous, toxic leaves of endemic peat-forest plants (Macaranga pruinosa, Campnosperma coriaceum, Pandanus atrocarpus, Stenochlaena palustris) were barely decomposed by bacteria and fungi, the leaves of M. tanarius, another plant species, were almost completely decomposed after one year. Thus it is intrinsic properties of the leaves (that are adaptations to deter herbivory in the nutrient poor environment) that impede microbial breakdown.[28]

Ecoregions edit

See also edit

References edit

  1. ^ a b c d ANDERSON, J. A. R. (1963). "The structure and development of the peat swamps of Sarawak and Burunei". Jour. Trop. Geogr. 18: 7–16.
  2. ^ a b Page, S. E. et al. (2002) ‘The amount of carbon released from peat and forest fires in Indonesia during 1997’, Nature, 420(6911), p. 61. doi: 10.1038/nature01141.1.
  3. ^ Ng, Peter. (June 1994). Diversity and conservation of blackwater fishes in Peninsular Malaysia, particularly in the North Selangor peat swamp forest
  4. ^ a b Hirano, Takashi. (29 November 2006). Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia.
  5. ^ "Peatland Treasures - Wetlands International". wetlands.org. Retrieved 15 April 2018.
  6. ^ a b PAGE, SUSAN E.; RIELEY, JOHN O.; BANKS, CHRISTOPHER J. (4 January 2011). "Global and regional importance of the tropical peatland carbon pool". Global Change Biology. 17 (2): 798–818. doi:10.1111/j.1365-2486.2010.02279.x. ISSN 1354-1013.
  7. ^ Rieley JO, Ahmad-Shah AA Brady MA (1996) The extent and nature of tropical peat swamps. In: Maltby E, Immirzi CP, Safford RJ (eds) Tropical lowland peatlands of Southeast Asia, proceedings of a workshop on integrated planning and management of tropical lowland peatlands held at Cisarua, Indonesia, 3–8 July 1992. IUCN, Gland, Switzerland
  8. ^ Page SE, Rieley JO, Wüst R (2006) Lowland tropical peatlands of Southeast Asia In: Martini IP, Martínez Cortizas A, Chesworth W (eds) Peatlands: Evolution and Records of Environmental and Climate Changes. Elsevier BV pp 145-172
  9. ^ a b Page, S. E.; Rieley, J. O.; Shotyk, Ø W.; Weiss, D. (29 November 1999). "Interdependence of peat and vegetation in a tropical peat swamp forest". Philosophical Transactions of the Royal Society of London B: Biological Sciences. 354 (1391): 1885–1897. doi:10.1098/rstb.1999.0529. ISSN 0962-8436. PMID 11605630.
  10. ^ a b c d e f Cameron, C. C., Esterle, J. S. and Palmer, C. A. (1 June 1989). "The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitudes". International Journal of Coal Geology. 12 (1–4): 105–156. doi:10.1016/0166-5162(89)90049-9. ISSN 0166-5162.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Klinger, L.F. (1996). "The myth of the classic hydrosere model of bog succession". Arctic and Alpine Research. doi:10.1080/00040851.1996.12003142.
  12. ^ "Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia". CATENA. 73 (2): 212–224. 15 April 2008. doi:10.1016/j.catena.2007.07.010. ISSN 0341-8162.
  13. ^ Anshari, Gusti (15 July 2001). "A Late Pleistocene and Holocene pollen and charcoal record from peat swamp forest, Lake Sentarum Wildlife Reserve, West Kalimantan, Indonesia". Palaeogeography, Palaeoclimatology, Palaeoecology. 171 (3–4): 213–228. doi:10.1016/S0031-0182(01)00246-2. ISSN 0031-0182.
  14. ^ a b c Yu, Zicheng; Loisel, Julie; Brosseau, Daniel P.; Beilman, David W.; Hunt, Stephanie J. (2010). "Global peatland dynamics since the Last Glacial Maximum". Geophysical Research Letters. 37 (13): n/a–n/a. doi:10.1029/2010gl043584. ISSN 0094-8276.
  15. ^ "The early Holocene sea level rise". Quaternary Science Reviews. 30 (15–16): 1846–1860. 1 July 2011. doi:10.1016/j.quascirev.2011.04.019. ISSN 0277-3791.
  16. ^ "Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability". Quaternary Science Reviews. 30 (7–8): 999–1010. 1 April 2011. doi:10.1016/j.quascirev.2011.01.018. ISSN 0277-3791.
  17. ^ "Holocene sea-level changes in the Indo-Pacific". Journal of Asian Earth Sciences. 25 (1): 29–43. 1 April 2005. doi:10.1016/j.jseaes.2004.01.009. ISSN 1367-9120.
  18. ^ Page, S. E.; Wűst, R. A. J.; Weiss, D.; Rieley, J. O.; Shotyk, W.; Limin, S. H. (27 September 2004). "A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog(Kalimantan, Indonesia): implications for past, present and future carbon dynamics". Journal of Quaternary Science. 19 (7): 625–635. doi:10.1002/jqs.884. ISSN 0267-8179.
  19. ^ Anshari, Gusti; Peter Kershaw, A.; Van Der Kaars, Sander; Jacobsen, Geraldine (27 September 2004). "Environmental change and peatland forest dynamics in the Lake Sentarum area, West Kalimantan, Indonesia". Journal of Quaternary Science. 19 (7): 637–655. doi:10.1002/jqs.879. ISSN 0267-8179.
  20. ^ Partin, Judson W., Kim M. Cobb, Jess F. Adkins, Brian Clark, and Diego P. Fernandez. "Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum." Nature 449, no. 7161 (2007): 452.
  21. ^ "Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern oscillation". Quaternary International. 118–119: 127–143. 1 January 2004. doi:10.1016/S1040-6182(03)00134-4. ISSN 1040-6182.
  22. ^ Yule CM (2008) Loss of biodiversity and ecosystem functioning in Indo-Malayan peat swamp forests. Biodiversity and Conservation doi:10.1007/s10531-008-9510-5
  23. ^ "Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia". CATENA. 73 (2): 212–224. 15 April 2008. doi:10.1016/j.catena.2007.07.010. ISSN 0341-8162.
  24. ^ COUWENBERG, JOHN; DOMMAIN, RENÉ; JOOSTEN, HANS (1 July 2009). "Greenhouse gas fluxes from tropical peatlands in south-east Asia". Global Change Biology. 16 (6): 1715–1732. doi:10.1111/j.1365-2486.2009.02016.x. ISSN 1354-1013.
  25. ^ Sorensen, Kim W. (September 1993). Indonesian peat swamp forests and their role as a carbon sink.
  26. ^ Mathai, J. (5 October 2009). Seeing REDD over deforestation.
  27. ^ Antara (news agency). (21 March 2011). RI`s peat forests can play important role in climate change.
  28. ^ Yule, Catherine M. (22 June 2008). Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia.

External links edit

Category:Tropical and subtropical moist broadleaf forests Category:Swamps Category:Forestry in Indonesia Category:Agriculture in Indonesia