User:Immcarle165/Interferon gamma

Interferon gamma (IFN-γ) is a dimerized soluble cytokine that is the only member of the type II class of interferons.[1] The existence of this interferon, which early in its history was known as immune interferon, was described by E. F. Wheelock in 1965 as a product of human leukocytes stimulated with phytohemagglutinin, and by others as a product of antigen-stimulated lymphocytes.[2] It was also shown to be produced in human lymphocytes.[3] or tuberculin-sensitized mouse peritoneal lymphocytes[4] challenged with Mantoux test (PPD); the resulting supernatants were shown to inhibit growth of vesicular stomatitis virus. Those reports also contained the basic observation underlying the now widely employed interferon gamma release assay used to test for tuberculosis. IFN-γ plays a significant role in cancer immunotherapy, as well as in the infection of chlamydia, and herpes simplex virus I. In humans, the IFN-γ protein is encoded by the IFNG gene.[5][6]

Function edit

IFN-γ, or type II interferon, is a cytokine that is critical for innate and adaptive immunity against viral, some bacterial and protozoan infections. IFN-γ is an important activator of macrophages and inducer of major histocompatibility complex class II molecule expression. Aberrant IFN-γ expression is associated with several autoinflammatory and autoimmune diseases. The importance of IFN-γ in the immune system stems in part from its ability to inhibit viral replication directly, and most importantly from its immunostimulatory and immunomodulatory effects. IFN-γ is produced predominantly by natural killer cells (NK) and natural killer T cells (NKT) as part of the innate immune response, and by CD4 Th1 and CD8 cytotoxic T lymphocyte (CTL) effector T cells once antigen-specific immunity develops[7][8] as part of the adaptive immune response. IFN-γ is also produced by non-cytotoxic innate lymphoid cells (ILC), a family of immune cells first discovered in the early 2010s.[9]

Structure edit

The IFN-γ monomer consists of a core of six α-helices and an extended unfolded sequence in the C-terminal region.[10][11] This is shown in the structural models below. The α-helices in the core of the structure are numbered 1 to 6.

 
Figure 1. Line and cartoon representation of an IFN-γ monomer.[11]

The biologically active homodimer is formed by non-covalent anti-parallel inter-locking of the two monomers as shown below. In the cartoon model, one monomer is shown in red, the other in blue.

 
Figure 2. Line and cartoon representation of an IFN-γ dimer.[11]

Receptor binding edit

 
Figure 3. IFN dimer interacting with two IFNGR1 receptor molecules.[11]

Cellular responses to IFN-γ are activated through its interaction with a heterodimeric receptor consisting of Interferon gamma receptor 1 (IFN-γR1) and Interferon gamma receptor 2 (IFN-γR2). IFN-γ binding to the receptor activates the JAK-STAT pathway. Activation of the JAK-STAT pathway induces upregulation of interferon-stimulated genes (ISGs), including MHC II.[12] IFN-γ also binds to the glycosaminoglycan heparan sulfate (HS) at the cell surface. However, in contrast to many other heparan sulfate binding proteins, where binding promotes biological activity, the binding of IFN-γ to HS inhibits its biological activity.[13]

The structural models shown in figures 1-3 for IFN-γ[11] are all shortened at their C-termini by 17 amino acids. Full length IFN-γ is 143 amino acids long, the models are 126 amino acids long. Affinity for heparan sulfate resides solely within the deleted sequence of 17 amino acids.[14] Within this sequence of 17 amino acids lie two clusters of basic amino acids termed D1 and D2, respectively. Heparan sulfate interacts with both of these clusters.[15] In the absence of heparan sulfate the presence of the D1 sequence increases the rate at which IFN-γ-receptor complexes form.[13] Interactions between the D1 cluster of amino acids and the receptor may be the first step in complex formation. By binding to D1 HS may compete with the receptor and prevent active receptor complexes from forming.

The biological significance of heparan sulfates interaction with IFN-γ is unclear; however, binding of the D1 cluster to HS may protect it from proteolytic cleavage.[15]

Biological activity edit

IFN-γ is secreted by T helper cells (specifically, Th1 cells), cytotoxic T cells (TC cells), macrophages, mucosal epithelial cells and NK cells. IFN-γ is both an important autocrine signal for professional APCs in early innate immune response, and an important paracrine signal in adaptive immune response. The expression of IFN-γ is induced by the cytokines IL-12, IL-15, IL-18, and type I IFN.[16] IFN-γ is the only Type II interferon and it is serologically distinct from Type I interferons; it is acid-labile, while the type I variants are acid-stable.

IFN-γ has antiviral, immunoregulatory, and anti-tumor properties.[17] It alters transcription in up to 30 genes producing a variety of physiological and cellular responses. Among the effects are:

IFN-γ is the primary cytokine that defines Th1 cells: Th1 cells secrete IFN-γ, which in turn causes more undifferentiated CD4+ cells (Th0 cells) to differentiate into Th1 cells ,[21] representing a positive feedback loop—while suppressing Th2 cell differentiation. (Equivalent defining cytokines for other cells include IL-4 for Th2 cells and IL-17 for Th17 cells.)

NK cells and CD8+ cytotoxic T cells also produce IFN-γ. IFN-γ suppresses osteoclast formation by rapidly degrading the RANK adaptor protein TRAF6 in the RANK-RANKL signaling pathway, which otherwise stimulates the production of NF-κB.

Activity in granuloma formation edit

A granuloma is the body's way of dealing with a substance it cannot remove or sterilize. Infections are typically the most common cause of granulomas; common causes of granulomas include tuberculosis, leprosy, histoplasmosis, cryptococcosis, coccidioidomycosis, blastomycosis, and toxoplasmosis. Examples of non-infectious granulomatous diseases are sarcoidosis, Crohn's disease, berylliosis, giant-cell arteritis, granulomatosis with polyangiitis, eosinophilic granulomatosis with polyangiitis, pulmonary rheumatoid nodules, and aspiration of food and other particulate material into the lung.[22] The infectious pathophysiology of granulomas is discussed primarily here.

The key association between IFN-γ and granulomas is that IFN-γ activates macrophages so that they become more potent killers of intracellular organisms.[23] Activation of macrophages by IFN-γ from Th1 helper cells in mycobacterial infections allows the macrophages to overcome the inhibition of phagolysosome maturation caused by mycobacteria (to stay alive inside macrophages).[24][25] The first steps in IFN-γ-induced granuloma formation are activation of Th1 helper cells by macrophages releasing IL-1 and IL-12 in the presence of intracellular pathogens, and presentation of antigens from those pathogens. Next the Th1 helper cells aggregate around the macrophages and release IFN-γ, which activates the macrophages. Further activation of macrophages causes a cycle of further killing of intracellular bacteria, and further presentation of antigens to Th1 helper cells with further release of IFN-γ. Finally, macrophages surround the Th1 helper cells and become fibroblast-like cells walling off the infection.

Activity during pregnancy edit

Uterine Natural Killer cells (NK) secrete high levels of chemoattractants, such as IFN-γ in mice. IFN-γ dilates and thins the walls of maternal spiral arteries to enhance blood flow to the implantation site. This remodeling aids in the development of the placenta as it invades the uterus in its quest for nutrients. IFN-γ knockout mice fail to initiate normal pregnancy-induced modification of decidual arteries. These models display abnormally low amounts of cells or necrosis of decidua.[26]

In humans, elevated levels of IFN-γ have been associated with increased risk of miscarriage. High IFN-γ levels have been observed in women with spontaneous miscarriage, when compared to women with no history of spontaneous miscarriage.[27] Additionally, low-IFN-γ levels are associated with women who successfully carry to term. It is possible that IFN-γ is cytotoxic to trophoblasts.[28]

Production edit

Recombinant human IFN-γ, as an expensive biopharmaceutical, has been expressed in different expression systems including prokaryotic, protozoan, fungal (yeasts), plant, insect and mammalian cells. Human IFN-γ is commonly expressed in Escherichia coli, marketed as ACTIMMUNE®, however, the resulting product of the prokaryotic expression system is not glycosylated with a short half-life in the bloodstream after injection; the purification process from bacterial expression system is also very costly. Other expression systems like Pichia pastoris did not show satisfactory results in terms of yields.[29][30]

Therapeutic use edit

Recombinant IFN-γ 1b therapy is approved by the U.S. Food and Drug Administration to treat chronic granulomatous disease (CGD)[31] and osteopetrosis.[32] The mechanism by which IFN-γ benefits CGD is via enhancing the efficacy of neutrophils against catalase-positive bacteria by correcting patients' oxidative metabolism.[33]

It was not approved to treat idiopathic pulmonary fibrosis (IPF). In 2002, the manufacturer InterMune issued a press release saying that phase III data demonstrated survival benefit in IPF and reduced mortality by 70% in patients with mild to moderate disease. The U.S. Department of Justice charged that the release contained false and misleading statements. InterMune's chief executive, Scott Harkonen, was accused of manipulating the trial data, was convicted in 2009 of wire fraud, and was sentenced to fines and community service. Harkonen appealed his conviction to the U.S. Court of Appeals for the Ninth Circuit, and lost.[34] Harkonen was granted a full pardon on January 20, 2021.[35]

Preliminary research on the role of IFN-γ in treating Friedreich's ataxia (FA) conducted by Children’s Hospital of Philadelphia has found no beneficial effects in short-term (< 6-months) treatment.[36] However, researchers in Turkey have discovered significant improvements in patients' gait and stance after 6 months of treatment.[37]

Although not officially approved, IFN-γ has also been shown to be effective in treating patients with moderate to severe atopic dermatitis.[38][39][40] Specifically, recombinant IFN-γ therapy has shown promise in patients with lowered IFN-γ expression, such as those with predisposition to herpes simplex virus, and pediatric patients.[41]

Potential use in immunotherapy edit

IFN-γ increases an anti-proliferative state in cancer cells, while upregulating MHC expression, which increases immunorecognition and removal of pathogenic cells.[42] IFN-γ also reduces metastasis in tumors by upregulating fibronectin, which negatively impacts tumor architecture. [43]

IFN-γ is not approved yet for the treatment in any cancer immunotherapy. However, improved survival was observed when IFN-γ was administrated to patients with bladder carcinoma and melanoma cancers.The most promising result was achieved in patients with stage 2 and 3 of ovarian carcinoma. On the contrary, it was stressed: "Interferon-γ secreted by CD8-positive lymphocytes upregulates PD-L1 on ovarian cancer cells and promotes tumour growth."[44] The in vitro study of IFN-γ in cancer cells is more extensive and results indicate anti-proliferative activity of IFN-γ leading to the growth inhibition or cell death, generally induced by apoptosis but sometimes by autophagy.[29] In addition, it has been reported that mammalian glycosylation of recombinant human IFN-γ, expressed in HEK293, improves its therapeutic efficacy compared to the unglycosylated form that is expressed in E. coli.[45]

Interactions edit

IFN-γ has been shown to interact with Interferon gamma receptor 1 and Interferon gamma receptor 2. [46][47]

Diseases edit

IFN-γ has been shown to be a crucial player in the immune response against some intracellular pathogens, including that of Chagas disease.[48] It has also been identified as having a role in seborrheic dermatitis.[49]

IFN-γ has a significant anti-viral effect in herpes simplex virus I (HSV) infection. IFN-γ compromises the microtubules that HSV relies upon for transport into an infected cell's nucleus, inhibiting the ability of HSV to replicate.[50][51] Studies in mice on acyclovir resistant herpes have shown that IFN-γ treatment can significantly reduce herpes viral load. The mechanism by which IFN-γ inhibits herpes reproduction is independent of T-cells, which means that IFN-γ may be an effective treatment in individuals with low T-cells.[52][53][54]

Chlamydia infection is impacted by IFN-γ in host cells. In human epithelial cells, IFN-γ upregulates expression of indoleamine 2,3-dioxygenase, which in turn depletes tryptophan in hosts and impedes chlamydia's reproduction.[55] [56] [57]Additionally, in rodent epithelial cells, IFN-γ upregulates a GTPase that inhibits chlamydial proliferation.[58] In both the human and rodent systems, chlamydia has evolved mechanisms to circumvent the negative effects of host cell behavior.

Regulation edit

There is evidence that interferon-gamma expression is regulated by a pseudoknotted element in its 5' UTR.[59] There is also evidence that interferon-gamma is regulated either directly or indirectly by the microRNAs: miR-29.[60] Furthermore, there is evidence that interferon-gamma expression is regulated via GAPDH in T-cells. This interaction takes place in the 3'UTR, where binding of GAPDH prevents the translation of the mRNA sequence.[61]

References edit

  1. ^ Gray PW, Goeddel DV (August 1982). "Structure of the human immune interferon gene". Nature. 298 (5877): 859–63. Bibcode:1982Natur.298..859G. doi:10.1038/298859a0. PMID 6180322. S2CID 4275528.
  2. ^ Wheelock EF (July 1965). "Interferon-Like Virus-Inhibitor Induced in Human Leukocytes by Phytohemagglutinin". Science. 149 (3681): 310–1. Bibcode:1965Sci...149..310W. doi:10.1126/science.149.3681.310. PMID 17838106. S2CID 1366348.
  3. ^ Green JA, Cooperband SR, Kibrick S (June 1969). "Immune specific induction of interferon production in cultures of human blood lymphocytes". Science. 164 (3886): 1415–7. Bibcode:1969Sci...164.1415G. doi:10.1126/science.164.3886.1415. PMID 5783715. S2CID 32651832.
  4. ^ Milstone LM, Waksman BH (November 1970). "Release of virus inhibitor from tuberculin-sensitized peritoneal cells stimulated by antigen". Journal of Immunology. 105 (5): 1068–71. PMID 4321289.
  5. ^ Naylor SL, Sakaguchi AY, Shows TB, Law ML, Goeddel DV, Gray PW (March 1983). "Human immune interferon gene is located on chromosome 12". The Journal of Experimental Medicine. 157 (3): 1020–7. doi:10.1084/jem.157.3.1020. PMC 2186972. PMID 6403645.
  6. ^ "Entrez Gene: IFNGR2".
  7. ^ "Entrez Gene: INFG".
  8. ^ Schoenborn JR, Wilson CB (2007). "Regulation of Interferon‐γ During Innate and Adaptive Immune Responses". Regulation of interferon-gamma during innate and adaptive immune responses. Vol. 96. pp. 41–101. doi:10.1016/S0065-2776(07)96002-2. ISBN 978-0-12-373709-0. PMID 17981204. {{cite book}}: |journal= ignored (help)
  9. ^ Artis D, Spits H (January 2015). "The biology of innate lymphoid cells". Nature. 517 (7534): 293–301. Bibcode:2015Natur.517..293A. doi:10.1038/nature14189. PMID 25592534. S2CID 4386692.
  10. ^ Ealick SE, Cook WJ, Vijay-Kumar S, Carson M, Nagabhushan TL, Trotta PP, Bugg CE (May 1991). "Three-dimensional structure of recombinant human interferon-gamma". Science. 252 (5006): 698–702. Bibcode:1991Sci...252..698E. doi:10.1126/science.1902591. PMID 1902591.
  11. ^ a b c d e PDB: 1FG9​; Thiel DJ, le Du MH, Walter RL, D'Arcy A, Chène C, Fountoulakis M, et al. (September 2000). "Observation of an unexpected third receptor molecule in the crystal structure of human interferon-gamma receptor complex". Structure. 8 (9): 927–36. doi:10.1016/S0969-2126(00)00184-2. PMID 10986460.
  12. ^ Hu, Xiaoyu; Ivashkiv, Lionel B. (2009-10-16). "Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases". Immunity. 31 (4): 539–550. doi:10.1016/j.immuni.2009.09.002. ISSN 1097-4180. PMC 2774226. PMID 19833085.
  13. ^ a b Sadir R, Forest E, Lortat-Jacob H (May 1998). "The heparan sulfate binding sequence of interferon-gamma increased the on rate of the interferon-gamma-interferon-gamma receptor complex formation". The Journal of Biological Chemistry. 273 (18): 10919–25. doi:10.1074/jbc.273.18.10919. PMID 9556569.
  14. ^ Vanhaverbeke C, Simorre JP, Sadir R, Gans P, Lortat-Jacob H (November 2004). "NMR characterization of the interaction between the C-terminal domain of interferon-gamma and heparin-derived oligosaccharides". The Biochemical Journal. 384 (Pt 1): 93–9. doi:10.1042/BJ20040757. PMC 1134092. PMID 15270718.
  15. ^ a b Lortat-Jacob H, Grimaud JA (March 1991). "Interferon-gamma binds to heparan sulfate by a cluster of amino acids located in the C-terminal part of the molecule". FEBS Letters. 280 (1): 152–4. doi:10.1016/0014-5793(91)80225-R. PMID 1901275. S2CID 45942972.
  16. ^ Castro, Flávia; Cardoso, Ana Patrícia; Gonçalves, Raquel Madeira; Serre, Karine; Oliveira, Maria José (2018). "Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion". Frontiers in Immunology. 9. doi:10.3389/fimmu.2018.00847/full#:~:text=interferon-gamma%20is%20secreted%20predominantly,and%20professional%20antigen-presenting%20cells%20(. ISSN 1664-3224.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  17. ^ Schroder K, Hertzog PJ, Ravasi T, Hume DA (February 2004). "Interferon-gamma: an overview of signals, mechanisms and functions". Journal of Leukocyte Biology. 75 (2): 163–89. doi:10.1189/jlb.0603252. PMID 14525967. S2CID 15862242.
  18. ^ Aquino-López, Arianexys; Senyukov, Vladimir V.; Vlasic, Zlatko; Kleinerman, Eugenie S.; Lee, Dean A. (2017). "Interferon Gamma Induces Changes in Natural Killer (NK) Cell Ligand Expression and Alters NK Cell-Mediated Lysis of Pediatric Cancer Cell Lines". Frontiers in Immunology. 8. doi:10.3389/fimmu.2017.00391/full. ISSN 1664-3224.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  19. ^ Hoyer FF, Naxerova K, Schloss MJ, Hulsmans M, Nair AV, Dutta P, et al. (November 2019). "Tissue-Specific Macrophage Responses to Remote Injury Impact the Outcome of Subsequent Local Immune Challenge". Immunity. 51 (5): 899–914.e7. doi:10.1016/j.immuni.2019.10.010. PMC 6892583. PMID 31732166.
  20. ^ Yao Y, Jeyanathan M, Haddadi S, Barra NG, Vaseghi-Shanjani M, Damjanovic D, et al. (November 2018). "Induction of Autonomous Memory Alveolar Macrophages Requires T Cell Help and Is Critical to Trained Immunity". Cell. 175 (6): 1634–1650.e17. doi:10.1016/j.cell.2018.09.042. PMID 30433869.
  21. ^ Luckheeram, Rishi Vishal; Zhou, Rui; Verma, Asha Devi; Xia, Bing (2012). "CD4+T Cells: Differentiation and Functions". Journal of Immunology Research. 2012: 925135. doi:10.1155/2012/925135. PMC 3312336. PMID 22474485.
  22. ^ Mukhopadhyay, Sanjay; Farver, Carol F.; Vaszar, Laszlo T.; Dempsey, Owen J.; Popper, Helmut H.; Mani, Haresh; Capelozzi, Vera L.; Fukuoka, Junya; Kerr, Keith M.; Zeren, E. Handan; Iyer, Venkateswaran K. (2012-01-01). "Causes of pulmonary granulomas: a retrospective study of 500 cases from seven countries". Journal of Clinical Pathology. 65 (1): 51–57. doi:10.1136/jclinpath-2011-200336. ISSN 0021-9746. PMID 22011444.
  23. ^ Wu, Cong; Xue, Yiquan; Wang, Pin; Lin, Li; Liu, Qiuyan; Li, Nan; Xu, Junfang; Cao, Xuetao (2014-09-15). "IFN-γ Primes Macrophage Activation by Increasing Phosphatase and Tensin Homolog via Downregulation of miR-3473b". The Journal of Immunology. 193 (6): 3036–3044. doi:10.4049/jimmunol.1302379. ISSN 0022-1767. PMID 25092892.
  24. ^ Herbst, Susanne; Schaible, Ulrich E.; Schneider, Bianca E. (2011-05-02). "Interferon Gamma Activated Macrophages Kill Mycobacteria by Nitric Oxide Induced Apoptosis". PLoS ONE. 6 (5): e19105. doi:10.1371/journal.pone.0019105. ISSN 1932-6203. PMC 3085516. PMID 21559306.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  25. ^ Harris, James; Master, Sharon S.; De Haro, Sergio A.; Delgado, Monica; Roberts, Esteban A.; Hope, Jayne C.; Keane, Joseph; Deretic, Vojo (2009-03-15). "Th1 – Th2 polarisation and autophagy in the control of intracellular mycobacteria by macrophages". Veterinary immunology and immunopathology. 128 (1–3): 37–43. doi:10.1016/j.vetimm.2008.10.293. ISSN 0165-2427. PMC 2789833. PMID 19026454.
  26. ^ Ashkar AA, Di Santo JP, Croy BA (July 2000). "Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy". The Journal of Experimental Medicine. 192 (2): 259–70. doi:10.1084/jem.192.2.259. PMC 2193246. PMID 10899912.
  27. ^ Micallef, Anna; Grech, Nicole; Farrugia, Francesca; Schembri-Wismayer, Pierre; Calleja-Agius, Jean (2014-01). "The role of interferons in early pregnancy". Gynecological Endocrinology: The Official Journal of the International Society of Gynecological Endocrinology. 30 (1): 1–6. doi:10.3109/09513590.2012.743011. ISSN 1473-0766. PMID 24188446. {{cite journal}}: Check date values in: |date= (help)
  28. ^ Berkowitz, Ross S.; Hill, Joseph A.; Kurtz, Caroline B.; Anderson, Deborah J. (1988-01-01). "Effects of products of activated leukocytes (lymphokines and monokines) on the growth of malignant trophoblast cells in vitro". American Journal of Obstetrics and Gynecology. 158 (1): 199–203. doi:10.1016/0002-9378(88)90810-1. ISSN 0002-9378.
  29. ^ a b Razaghi A, Owens L, Heimann K (December 2016). "Review of the recombinant human interferon gamma as an immunotherapeutic: Impacts of production platforms and glycosylation". Journal of Biotechnology. 240: 48–60. doi:10.1016/j.jbiotec.2016.10.022. PMID 27794496.
  30. ^ Razaghi A, Tan E, Lua LH, Owens L, Karthikeyan OP, Heimann K (January 2017). "Is Pichia pastoris a realistic platform for industrial production of recombinant human interferon gamma?". Biologicals. 45: 52–60. doi:10.1016/j.biologicals.2016.09.015. PMID 27810255.
  31. ^ Todd PA, Goa KL (January 1992). "Interferon gamma-1b. A review of its pharmacology and therapeutic potential in chronic granulomatous disease". Drugs. 43 (1): 111–22. doi:10.2165/00003495-199243010-00008. PMID 1372855. S2CID 46986837.
  32. ^ Key LL, Ries WL, Rodriguiz RM, Hatcher HC (July 1992). "Recombinant human interferon gamma therapy for osteopetrosis". The Journal of Pediatrics. 121 (1): 119–24. doi:10.1016/s0022-3476(05)82557-0. PMID 1320672.
  33. ^ Errante, Paolo R.; Frazão, Josias B.; Condino-Neto, Antonio (2008-11). "The use of interferon-gamma therapy in chronic granulomatous disease". Recent Patents on Anti-Infective Drug Discovery. 3 (3): 225–230. doi:10.2174/157489108786242378. ISSN 1574-891X. PMID 18991804. {{cite journal}}: Check date values in: |date= (help)
  34. ^ Silverman E (September 2013). "Drug Marketing. The line between scientific uncertainty and promotion of snake oil". BMJ. 347: f5687. doi:10.1136/bmj.f5687. PMID 24055923. S2CID 27716008.
  35. ^ "Statement from the Press Secretary Regarding Executive Grants of Clemency". whitehouse.gov. January 20, 2021 – via National Archives.
  36. ^ Lynch, David R.; Hauser, Lauren; McCormick, Ashley; Wells, McKenzie; Dong, Yi Na; McCormack, Shana; Schadt, Kim; Perlman, Susan; Subramony, Sub H.; Mathews, Katherine D.; Brocht, Alicia (2019-03). "Randomized, double-blind, placebo-controlled study of interferon-γ 1b in Friedreich Ataxia". Annals of Clinical and Translational Neurology. 6 (3): 546–553. doi:10.1002/acn3.731. ISSN 2328-9503. PMC 6414489. PMID 30911578. {{cite journal}}: Check date values in: |date= (help)
  37. ^ YETKİN, Mehmet Fatih; GÜLTEKİN, Murat (2020-09-21). "Efficacy and Tolerability of Interferon Gamma in Treatment of Friedreich's Ataxia: Retrospective Study". Archives of Neuropsychiatry. 57 (4): 270–273. doi:10.29399/npa.25047. ISSN 1300-0667. PMC 7735154. PMID 33354116.
  38. ^ Akhavan A, Rudikoff D (June 2008). "Atopic dermatitis: systemic immunosuppressive therapy". Seminars in Cutaneous Medicine and Surgery. 27 (2): 151–5. doi:10.1016/j.sder.2008.04.004. PMID 18620137.
  39. ^ Schneider LC, Baz Z, Zarcone C, Zurakowski D (March 1998). "Long-term therapy with recombinant interferon-gamma (rIFN-gamma) for atopic dermatitis". Annals of Allergy, Asthma & Immunology. 80 (3): 263–8. doi:10.1016/S1081-1206(10)62968-7. PMID 9532976.
  40. ^ Hanifin JM, Schneider LC, Leung DY, Ellis CN, Jaffe HS, Izu AE, et al. (February 1993). "Recombinant interferon gamma therapy for atopic dermatitis". Journal of the American Academy of Dermatology. 28 (2 Pt 1): 189–97. doi:10.1016/0190-9622(93)70026-p. PMID 8432915.
  41. ^ Brar, Kanwaljit; Leung, Donald Y. M. (2016). "Recent considerations in the use of recombinant interferon gamma for biological therapy of atopic dermatitis". Expert Opinion on Biological Therapy. 16 (4): 507–514. doi:10.1517/14712598.2016.1135898. ISSN 1744-7682. PMC 4985031. PMID 26694988.
  42. ^ Kak, Gunjan; Raza, Mohsin; Tiwari, Brijendra K. (2018-05-30). "Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases". Biomolecular Concepts. 9 (1): 64–79. doi:10.1515/bmc-2018-0007. ISSN 1868-503X. PMID 29856726.
  43. ^ Jorgovanovic, Dragica; Song, Mengjia; Wang, Liping; Zhang, Yi (2020-09-29). "Roles of IFN-γ in tumor progression and regression: a review". Biomarker Research. 8 (1): 49. doi:10.1186/s40364-020-00228-x. ISSN 2050-7771. PMC 7526126. PMID 33005420.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  44. ^ Abiko K, Matsumura N, Hamanishi J, Horikawa N, Murakami R, Yamaguchi K, et al. (April 2015). "IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer". British Journal of Cancer. 112 (9): 1501–9. doi:10.1038/bjc.2015.101. PMC 4453666. PMID 25867264.
  45. ^ Razaghi A, Villacrés C, Jung V, Mashkour N, Butler M, Owens L, Heimann K (October 2017). "Improved therapeutic efficacy of mammalian expressed-recombinant interferon gamma against ovarian cancer cells". Experimental Cell Research. 359 (1): 20–29. doi:10.1016/j.yexcr.2017.08.014. PMID 28803068. S2CID 12800448.
  46. ^ Thiel DJ, le Du MH, Walter RL, D'Arcy A, Chène C, Fountoulakis M, et al. (September 2000). "Observation of an unexpected third receptor molecule in the crystal structure of human interferon-gamma receptor complex". Structure. 8 (9): 927–36. doi:10.1016/S0969-2126(00)00184-2. PMID 10986460.
  47. ^ Kotenko SV, Izotova LS, Pollack BP, Mariano TM, Donnelly RJ, Muthukumaran G, et al. (September 1995). "Interaction between the components of the interferon gamma receptor complex". The Journal of Biological Chemistry. 270 (36): 20915–21. doi:10.1074/jbc.270.36.20915. PMID 7673114.
  48. ^ Leon Rodriguez DA, Carmona FD, Echeverría LE, González CI, Martin J (March 2016). "IL18 Gene Variants Influence the Susceptibility to Chagas Disease". PLOS Neglected Tropical Diseases. 10 (3): e0004583. doi:10.1371/journal.pntd.0004583. PMC 4814063. PMID 27027876.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  49. ^ Trznadel-Grodzka E, Błaszkowski M, Rotsztejn H (November 2012). "Investigations of seborrheic dermatitis. Part I. The role of selected cytokines in the pathogenesis of seborrheic dermatitis". Postepy Higieny I Medycyny Doswiadczalnej. 66: 843–7. doi:10.5604/17322693.1019642. PMID 23175340.
  50. ^ Bigley, Nancy J. (2014-02-06). "Complexity of Interferon-γ Interactions with HSV-1". Frontiers in Immunology. 5: 15. doi:10.3389/fimmu.2014.00015. ISSN 1664-3224. PMC 3915238. PMID 24567732.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  51. ^ Sodeik, Beate; Ebersold, Melanie W.; Helenius, Ari (1997-03-10). "Microtubule-mediated Transport of Incoming Herpes Simplex Virus 1 Capsids to the Nucleus". The Journal of Cell Biology. 136 (5): 1007–1021. ISSN 0021-9525. PMC 2132479. PMID 9060466.
  52. ^ Huang, Wen-Yen; Su, Ying-Hsiu; Yao, Hui-Wen; Ling, Ping; Tung, Yuk-Ying; Chen, Shih-Heng; Wang, Xiaohe; Chen, Shun-Hua (2010-03). "Beta interferon plus gamma interferon efficiently reduces acyclovir-resistant herpes simplex virus infection in mice in a T-cell-independent manner". The Journal of General Virology. 91 (Pt 3): 591–598. doi:10.1099/vir.0.016964-0. ISSN 1465-2099. PMID 19906941. {{cite journal}}: Check date values in: |date= (help)
  53. ^ Sainz, Bruno; Halford, William P. (2002-11). "Alpha/Beta Interferon and Gamma Interferon Synergize To Inhibit the Replication of Herpes Simplex Virus Type 1". Journal of Virology. 76 (22): 11541–11550. doi:10.1128/JVI.76.22.11541-11550.2002. ISSN 0022-538X. PMID 12388715. {{cite journal}}: Check date values in: |date= (help)
  54. ^ Khanna, Kamal M; Lepisto, Andrew J; Decman, Vilma; Hendricks, Robert L (2004-08-01). "Immune control of herpes simplex virus during latency". Current Opinion in Immunology. 16 (4): 463–469. doi:10.1016/j.coi.2004.05.003. ISSN 0952-7915.
  55. ^ Rottenberg, Martín E.; Gigliotti-Rothfuchs, Antonio; Wigzell, Hans (2002-08). "The role of IFN-gamma in the outcome of chlamydial infection". Current Opinion in Immunology. 14 (4): 444–451. doi:10.1016/s0952-7915(02)00361-8. ISSN 0952-7915. PMID 12088678. {{cite journal}}: Check date values in: |date= (help)
  56. ^ Nelson, David E.; Virok, Dezso P.; Wood, Heidi; Roshick, Christine; Johnson, Raymond M.; Whitmire, William M.; Crane, Deborah D.; Steele-Mortimer, Olivia; Kari, Laszlo; McClarty, Grant; Caldwell, Harlan D. (2005-07-14). "Chlamydial IFN-γ immune evasion is linked to host infection tropism". Proceedings of the National Academy of Sciences. 102 (30): 10658–10663. doi:10.1073/pnas.0504198102. ISSN 0027-8424. PMC 1180788. PMID 16020528.{{cite journal}}: CS1 maint: PMC format (link)
  57. ^ Taylor, Milton W.; Feng, Gensheng (1991-08). "Relationship between interferon‐γ, indoleamine 2,3‐dioxygenase, and tryptophan catabolism". The FASEB Journal. 5 (11): 2516–2522. doi:10.1096/fasebj.5.11.1907934. ISSN 0892-6638. {{cite journal}}: Check date values in: |date= (help)CS1 maint: unflagged free DOI (link)
  58. ^ Bernstein-Hanley, Isaac; Coers, Jörn; Balsara, Zarine R.; Taylor, Gregory A.; Starnbach, Michael N.; Dietrich, William F. (2006-09-19). "The p47 GTPases Igtp and Irgb10 map to the Chlamydia trachomatis susceptibility locus Ctrq-3 and mediate cellular resistance in mice". Proceedings of the National Academy of Sciences of the United States of America. 103 (38): 14092–14097. doi:10.1073/pnas.0603338103. ISSN 0027-8424. PMC 1599917. PMID 16959883.
  59. ^ Ben-Asouli Y, Banai Y, Pel-Or Y, Shir A, Kaempfer R (January 2002). "Human interferon-gamma mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR". Cell. 108 (2): 221–32. doi:10.1016/S0092-8674(02)00616-5. PMID 11832212. S2CID 14722737.
  60. ^ Asirvatham AJ, Gregorie CJ, Hu Z, Magner WJ, Tomasi TB (April 2008). "MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components". Molecular Immunology. 45 (7): 1995–2006. doi:10.1016/j.molimm.2007.10.035. PMC 2678893. PMID 18061676.
  61. ^ Chang CH, Curtis JD, Maggi LB, Faubert B, Villarino AV, O'Sullivan D, et al. (June 2013). "Posttranscriptional control of T cell effector function by aerobic glycolysis". Cell. 153 (6): 1239–51. doi:10.1016/j.cell.2013.05.016. PMC 3804311. PMID 23746840.