User:Canucksplayer/sandbox CPO-27

Crystal structure of CPO-27 in the hydrated state: Orthographic view of the pore cross-section. Metal: green, oxygen: red, carbon: grey, hydrogen: not shown.
Crystal structure of CPO-27 in the hydrated state: Perspective view of the pore cross-section. Metal: green, oxygen: red, carbon: grey, hydrogen: not shown.
Structure of 2,5-dioxybenzene-1,4-dicarboxylate, which is the linker molecules of the CPO-27 structure.

CPO-27 (CPO ⇒ Coordination polymer of Oslo), also called MOF-74[1], M2(dhtp) or M2(dobdc), is a material in the class of metal-organic frameworks (MOFs). Metal-organic frameworks are crystalline materials, in which metals are linked by ligands (so-called linker molecules) to form repeating coordination motives extending in three dimensions. The CPO-27 structure is build up from divalent metal centers (M2+), which are connected by 2,5-dioxybenzene-dicarboxylat (dobdc), alternatively also called 2,5-dihydroxyterephthalate (dhtp), linker molecules. The resulting framework structure contains hexagonal, honeycomb-like pores extending in one dimension. After the synthesis and in air atmosphere, one solvent molecule or one water molecule, respectively, is coordinated to each metal center and can be removed at elevated temperatures or in vaccuum. After the removal, the coordination site at the metal center can remain uncoordinated, which is called coordinatively unsaturated site (CUS), and can be reached by other molecules for direct metal-substrate interactions.

Structural analogs

edit

Monometallic CPO-27 analogs

edit

The CPO-27 structure was synthesized mainly with divalent 3d transition metals, which have similar ionic radii.

Overview of monometallic CPO-27 analogs
metal center and

oxidation state

Year of first publication Citation
Co2+ 2005 [2]
Zn2+ 2005 [1]
Ni2+ 2006 [3]
Mg2+ 2008 [4]
Mn2+ 2008 [5]
Fe2+ 2010 [6][7]
Cu2+ 2013 [8]
Cd2+ 2014 [9]

Mixed-metal CPO-27 analogs

edit

xx

Further mixed-metal CPO-27 materials were synthesized with up to ten different metals. In these materials, also other earth alkaline metals (Ca, Ba, Sr) apart from Mg have been incorporated into the CPO-27 structure, which have not been reported as monometallic analog so far.

Overview of mixed-metal CPO-27 analogs
Metal centers and

oxidation states


Metal ratios

[-]

Synthesis method Citation
Co2+ / Zn2+ 0.14 : 0.86

0.61 : 0.39

Direct synthesis [10]
0.51 : 0.49

0.53 : 0.47

[11]
0.55 : 0.45 [12]
Mg2+ / Zn2+ 0.49 : 0.51 Direct synthesis [13]
0.49 : 0.51

0.57 : 0.43

[11]
Ni2+ / Zn2+ 0.51 : 0.49 Direct synthesis [13][11]
Ni2+ / Mg2+ 0.52 : 0.48 Direct synthesis [11]
Ni2+ / Co2+ 0.45 : 0.55

0.32 : 0.68

0.19 : 0.81

Direct synthesis [14]
not reported [15]
0.17 : 0.83

0.40 : 0.60

0.67 : 0.33

[16]
0.57 : 0.43 [11]
0.40 : 0.60 [12]
Co2+ / Mn2+ not reported Direct synthesis [17]
Co2+ / Mg2+ 0.76 : 0.23 Direct synthesis [18]
0.47 : 0.53

0.53 : 0.47

[11]
Zn2+ / Cu2+ 0.48 : 0.52 Direct synthesis [11]
Ni2+ / Cu2+ 0.46 : 0.54 Direct synthesis [12]
Ca2+ / Mg2+ 0.40 : 0.60 Direct synthesis [11]
Co2+ / Cu2+ 0.52 : 0.48 Direct synthesis [11]
0.44 : 0.56 [12]
Mg2+ / Co2+ / Ni2+ / Zn2+ 0.12 : 0.29 : 0.27 : 0.31 Direct synthesis [18]
Mg2+ / Co2+ / Ni2+ / Zn2+ / Mn2+ /

Sr2+

0.07 : 0.29 : 0.28 : 0.25 : 0.11 :

0.003

Direct synthesis [18]
Mg2+ / Co2+ / Ni2+ / Zn2+ / Mn2+ /

Sr2+ / Ca2+ / Fe2+

0.14 : 0.20 : 0.20 : 0.13 : 0.13 :

0.02 : 0.01 : 0.15

Direct synthesis [18]
Mg2+ / Co2+ / Ni2+ / Zn2+ / Mn2+ /

Sr2+ / Ca2+ / Fe2+ / Ba2+ / Cd2+

0.13 : 0.14 : 0.14 : 0.10 : 0.12 :

0.01: 0.01 : 0.21 : 0.03 : 0.10

Direct synthesis [18]

Expanded linker CPO-27 analogs

edit
 
Example of elongated linker molecules, which were used for the formation of expanded CPO-27 analogs.

[19]

[20]

[21]

[22]

[23]

[24]

References

edit
  1. ^ a b Rosi, Nathaniel L.; Kim, Jaheon; Eddaoudi, Mohamed; Chen, Banglin; O'Keeffe, Michael; Yaghi, Omar M. (2005-01-13). "Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units". Journal of the American Chemical Society. 127 (5): 1504–1518. doi:10.1021/ja045123o. ISSN 0002-7863.
  2. ^ Dietzel, Pascal D. C.; Morita, Yusuke; Blom, Richard; Fjellvåg, Helmer (2005-10-07). "An In Situ High-Temperature Single-Crystal Investigation of a Dehydrated Metal-Organic Framework Compound and Field-Induced Magnetization of One-Dimensional Metal-Oxygen Chains". Angewandte Chemie International Edition. 44 (39): 6354–6358. doi:10.1002/anie.200501508. ISSN 1433-7851.
  3. ^ Dietzel, Pascal D. C.; Panella, Barbara; Hirscher, Michael; Blom, Richard; Fjellvåg, Helmer (2006). "Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework". Chemical Communications (9): 959. doi:10.1039/b515434k. ISSN 1359-7345.
  4. ^ Dietzel, Pascal D. C.; Blom, Richard; Fjellvåg, Helmer (August 2008). "Base-Induced Formation of Two Magnesium Metal-Organic Framework Compounds with a Bifunctional Tetratopic Ligand". European Journal of Inorganic Chemistry. 2008 (23): 3624–3632. doi:10.1002/ejic.200701284.
  5. ^ Zhou, Wei; Wu, Hui; Yildirim, Taner (2008-11-19). "Enhanced H 2 Adsorption in Isostructural Metal−Organic Frameworks with Open Metal Sites: Strong Dependence of the Binding Strength on Metal Ions". Journal of the American Chemical Society. 130 (46): 15268–15269. doi:10.1021/ja807023q. ISSN 0002-7863.
  6. ^ Bhattacharjee, Samiran; Choi, Jung-Sik; Yang, Seung-Tae; Choi, Sang Beom; Kim, Jaheon; Ahn, Wha-Seung (2010-01-01). "Solvothermal Synthesis of Fe-MOF-74 and Its Catalytic Properties in Phenol Hydroxylation". Journal of Nanoscience and Nanotechnology. 10 (1): 135–141. doi:10.1166/jnn.2010.1493.
  7. ^ Märcz, Matthias; Johnsen, Rune E.; Dietzel, Pascal D.C.; Fjellvåg, Helmer (2012-07-15). "The iron member of the CPO-27 coordination polymer series: Synthesis, characterization, and intriguing redox properties". Microporous and Mesoporous Materials. 157: 62–74. doi:10.1016/j.micromeso.2011.12.035.
  8. ^ Sanz, Raúl; Martínez, Fernando; Orcajo, Gisela; Wojtas, Lukasz; Briones, David (2013). "Synthesis of a honeycomb-like Cu-based metal–organic framework and its carbon dioxide adsorption behaviour". Dalton Trans. 42 (7): 2392–2398. doi:10.1039/C2DT32138F. ISSN 1477-9226.
  9. ^ Díaz-García, Manuel; Sánchez-Sánchez, Manuel (2014-05-15). "Synthesis and characterization of a new Cd-based metal-organic framework isostructural with MOF-74/CPO-27 materials". Microporous and Mesoporous Materials. 190: 248–254. doi:10.1016/j.micromeso.2014.02.021.
  10. ^ Botas, Juan A.; Calleja, Guillermo; Sánchez-Sánchez, Manuel; Orcajo, M. Gisela (August 2011). "Effect of Zn/Co ratio in MOF-74 type materials containing exposed metal sites on their hydrogen adsorption behaviour and on their band gap energy". International Journal of Hydrogen Energy. 36 (17): 10834–10844. doi:10.1016/j.ijhydene.2011.05.187.
  11. ^ a b c d e f g h i Ayoub, Ghada; Karadeniz, Bahar; Howarth, Ashlee J.; Farha, Omar K.; Đilović, Ivica; Germann, Luzia S.; Dinnebier, Robert E.; Užarević, Krunoslav; Friščić, Tomislav (2019-08-13). "Rational Synthesis of Mixed-Metal Microporous Metal–Organic Frameworks with Controlled Composition Using Mechanochemistry". Chemistry of Materials. 31 (15): 5494–5501. doi:10.1021/acs.chemmater.9b01068. ISSN 0897-4756.
  12. ^ a b c d Orcajo, Gisela; Villajos, José A.; Martos, Carmen; Botas, Juan Ángel; Calleja, Guillermo (2015-10-27). "Influence of chemical composition of the open bimetallic sites of MOF-74 on H2 adsorption". Adsorption. 21 (8): 589–595. doi:10.1007/s10450-015-9707-3. ISSN 0929-5607.
  13. ^ a b Kim, Daeok; Coskun, Ali (2017-04-24). "Template-Directed Approach Towards the Realization of Ordered Heterogeneity in Bimetallic Metal-Organic Frameworks". Angewandte Chemie International Edition. 56 (18): 5071–5076. doi:10.1002/anie.201702501.
  14. ^ Chen, Siru; Xue, Ming; Li, Yanqiang; Pan, Ying; Zhu, Liangkui; Qiu, Shilun (2015). "Rational design and synthesis of Ni x Co 3−x O 4 nanoparticles derived from multivariate MOF-74 for supercapacitors". Journal of Materials Chemistry A. 3 (40): 20145–20152. doi:10.1039/C5TA02557E. ISSN 2050-7488.
  15. ^ Young, Christine; Kim, Jeonghun; Kaneti, Yusuf Valentino; Yamauchi, Yusuke (2018-05-29). "One-Step Synthetic Strategy of Hybrid Materials from Bimetallic Metal–Organic Frameworks for Supercapacitor Applications". ACS Applied Energy Materials. 1 (5): 2007–2015. doi:10.1021/acsaem.8b00103. ISSN 2574-0962.
  16. ^ Villajos, José Antonio; Orcajo, Gisela; Martos, Carmen; Botas, Juan Ángel; Villacañas, Jesús; Calleja, Guillermo (2015-04-27). "Co/Ni mixed-metal sited MOF-74 material as hydrogen adsorbent". International Journal of Hydrogen Energy. 40 (15): 5346–5352. doi:10.1016/j.ijhydene.2015.01.113.
  17. ^ Wang, Y. C.; Li, W. B.; Zhao, L.; Xu, B. Q. (2016). "MOF-derived binary mixed metal/metal oxide @carbon nanoporous materials and their novel supercapacitive performances". Physical Chemistry Chemical Physics. 18 (27): 17941–17948. doi:10.1039/C6CP02374F. ISSN 1463-9076.
  18. ^ a b c d e Wang, Lisa J.; Deng, Hexiang; Furukawa, Hiroyasu; Gándara, Felipe; Cordova, Kyle E.; Peri, Dani; Yaghi, Omar M. (2014-06-16). "Synthesis and Characterization of Metal–Organic Framework-74 Containing 2, 4, 6, 8, and 10 Different Metals". Inorganic Chemistry. 53 (12): 5881–5883. doi:10.1021/ic500434a. ISSN 0020-1669.
  19. ^ Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gandara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H. (2012-05-25). "Large-Pore Apertures in a Series of Metal-Organic Frameworks". Science. 336 (6084): 1018–1023. doi:10.1126/science.1220131. ISSN 0036-8075.
  20. ^ Meng, Wei; Zeng, Yongfei; Liang, Zibin; Guo, Wenhan; Zhi, Chenxu; Wu, Yingxiao; Zhong, Ruiqin; Qu, Chong; Zou, Ruqiang (2018-11-09). "Tuning Expanded Pores in Metal-Organic Frameworks for Selective Capture and Catalytic Conversion of Carbon Dioxide". ChemSusChem. 11 (21): 3751–3757. doi:10.1002/cssc.201801585.
  21. ^ Xu, Jun; Blaakmeer, E. S. Merijn; Lipton, Andrew S.; McDonald, Thomas M.; Liu, Yifei Michelle; Smit, Berend; Long, Jeffrey R.; Kentgens, Arno P. M.; Reimer, Jeffrey A. (2017-09-14). "Uncovering the Local Magnesium Environment in the Metal–Organic Framework Mg 2 (dobpdc) Using 25 Mg NMR Spectroscopy". The Journal of Physical Chemistry C. 121 (36): 19938–19945. doi:10.1021/acs.jpcc.7b07809. ISSN 1932-7447.
  22. ^ Montes-Andrés, Helena; Orcajo, Gisela; Mellot-Draznieks, Caroline; Martos, Carmen; Botas, Juan Angel; Calleja, Guillermo (2018-12-13). "Novel Ni-IRMOF-74 Postsynthetically Functionalized for H 2 Storage Applications". The Journal of Physical Chemistry C. 122 (49): 28123–28132. doi:10.1021/acs.jpcc.8b08972. ISSN 1932-7447.
  23. ^ Zheng, Jian; Barpaga, Dushyant; Trump, Benjamin A.; Shetty, Manish; Fan, Yanzhong; Bhattacharya, Papri; Jenks, Jeromy J.; Su, Cheng-Yong; Brown, Craig M.; Maurin, Guillaume; McGrail, B. Peter (2020-02-12). "Molecular Insight into Fluorocarbon Adsorption in Pore Expanded Metal–Organic Framework Analogs". Journal of the American Chemical Society. 142 (6): 3002–3012. doi:10.1021/jacs.9b11963. ISSN 0002-7863.
  24. ^ Montes-Andrés, Helena; Orcajo, Gisela; Martos, Carmen; Botas, Juan A.; Calleja, Guillermo (2019-07-05). "Co/Ni mixed-metal expanded IRMOF-74 series and their hydrogen adsorption properties". International Journal of Hydrogen Energy. 44 (33): 18205–18213. doi:10.1016/j.ijhydene.2019.05.007.