User:BrettKuzmicz/Orogenic gold deposit

Modifications and Additions to Orogenic gold deposit

edit

Mineralogy and geochemistry

edit

Geochemical studies on gold bearing quartz-carbonate veins are important to determine temperature, pressure, at which the veins were generated, and the chemical signature of fluids. Quartz is generally the dominant mineral in the veins, but there are also gold bearing carbonate dominant veins in orogenic deposits. Ore bodies of orogenic gold deposits are generally defined by ≤ 3–5% sulfide minerals, most commonly arsenopyrite in metasedimentary host rocks and pyrite/pyrrhotite in meta-igneous rocks, and ≤ 5–15% carbonate minerals, such as ankerite, dolomite and calcite.[1] A common characteristic of almost all orogenic gold lodes is the presence of widespread carbonate alteration zones, notably ankerite, ferroan dolomite, siderite and calcite.[2] The tendency of gold to be preferentially transported as a sulfide complex also explain the near absence of base metals (Cu, Pb, Zn) in the same mineral systems, because these metals form complexes with chlor rather than sulfur.[3]

In general, hydrothermal fluids are characterized by low salinities (up to 12 wt% NaCl equivalent), high H2O and CO2 contents (> 4 mol%), with lesser amounts of CH4 and N2 and near-neutral pH.[3] High salinity fluids can result from dehydration of evaporite sequences, containing high Na and Cl concentrations and above mentioned base metal complexes.[3] Although some authors suggest a specific range of CO2 of about 5–20%, there is a wide variety from almost pure CO2 to almost pure H2O.[4] Whereby CO2-rich fluids may indicate high fluid production temperatures > 500 °C.[5]

Economics

edit

Orogenic gold deposits are responsible for approximately 75% of the world's gold production at over 1 billion ounces, when accounting that the origin of many gold placer deposits were orogenic in nature[6][7]. The price of gold at a given time will have an impact on whether a deposit will be economically feasible. The economic viability of a deposit will also depend on the grade and tonnage of the reserves of a deposit, along with the costs associated with extracting the ore. Methods of deliniating reserves and of extracting gold ore are improving over time, increasing the possibility for production of more gold[8]. On the other hand, the environmental impact of extracting gold from orogenic gold deposits, such as cyanidation, is coming more under consideration over time[9]. The cost of remediation for the environmental hazards of operating a mine at an orogenic gold deposit will impact its economic feasibility.

The typical grade of unmineralized igneous, sedimentary and metamorphic rocks is on average between 0.5 to 5 parts per billion[10]. Generally, ores of 5 parts per million (g/t) or greater grade will be extracted using underground mining and aim follow the gold bearing structure[11]. A gold mine can expect to extract ores of 1-2 parts per million (g/t) in an open pit mine due to the relatively lower operating costs of an open pit mine[12]. These values will differ based on the fluctuating price of gold and the variable cost and capacity of, mining, milling and refining[13].

Timeline of Global Emplacement

edit

Improved geochronological data on gold and paleo-reconstructions have given a better understanding of the emplacement of orogenic gold deposits over time. The oldest known orogenic gold deposits (>3 Ga) are in the Kaapvaal craton in the Barberton greenstone belt, the Ukranian shield and the Pilbara craton[14]. The Witwatersrand placer gold deposit in South Africa is estimated to have been emplaced by orogenic processes at a similar time[15][16]. The next period of time for favorable orogenic gold deposit formation was 2.8-2.55 Ga in the greenstone belts of the Yilgarn craton, Superior province, Dharwar craton, Zimbabwe craton, Wyoming craton and Baltic shield[17].

Proceeding the Archean, the next episode of orogenic gold deposit formation was from 2.1-1.8 Ga following the breakup of an Archean supercontinent and subsequent orogenic processes which ensued[18]. In this time period, deposits formed in interior Australia, northwestern Africa, northern South America, Sveconfennia, and the Canadian shield[19]. This is followed by a period of insignificant orogenic gold formation from 1.6 Ga to 0.8 Ga which is argued to either be due to worldwide major extension associated with anorogenic magmatism,[20][21] or due to erosion of narrow continental margins in which the orogenic gold was emplaced[22].

The formation of Godwana in the Neoproterozoic by the process of collisions of cratons indicates the time which orogenic gold-vein formation became continuous and wide spread until present day[23]. From the formation of Godwana until the beginning of the paleozoic, deposits formed in the Arabian-Nubian shield, western Africa, Brazil's Atlantic shield, in the Sao Francisco craton, and northwestern Australia[24]. From the paleozoic until the beginning of the mesozoic, in conjunction with the various orogenies which contributed to the evolution of Pangea, orogenic gold deposits were emplaced in Australia, Westland in New Zealand, Victoria Land in Antarctica, southern South America, southern Europe, central Asia and northwest China[25].

The break-up of Pangea in the mesozoic is the event which marks the final major global distribution of orogenic gold deposits. This event created an immense range of subduction zones surrounding the Pacific ocean[26]. To the east of the Pacific, the Cordilleran orogen resulted in many Middle Jurassic to mid-Cretaceous orogenic gold deposits[27]. To the west of the Pacific, a similar contemporaneous orogenic event occured resulting in orogenic gold deposits emplacing in the Russian Far East and the North China craton during the Early Cretaceous[28].

Environmental Effects

edit
 
Gold mine tailings pond in Guyana vulnerable to dam failure, and draining cyanide into surrounding environment.

The mining at orogenic gold deposits has significant negative environmental effects. Over 90% of ore extracted from orogenic gold deposits is treated by the process of cyanidation [29]. The toxic waste created from this process is stored in tailings ponds, which presents a risk for contamination of soil and water in the event of accidents or negligence by those handling the toxic liquids[30]. This contamination can occur in many forms such as dam failures, unregulated drainage into rivers[31], or leeching of toxic liquids through permeable soils[32]. One such example of this type of environmental disaster is the August 19, 1995 Omai cyanide spill in which the tailings dam of the Canadian owned Omai Gold Mines Ltd failed, releasing over 440 000 cubic meters of cyanide-laced effluent into the Omai river, causing over 80 km of distaster zone downriver[33]. The energy consumption associated with operating a mine in an orogenic gold deposit also produces a large carbon footprint, which as a greenhouse gas contributes to climate change [34]. Furthermore, creating space for open pit mines, tailings ponds, and mine infrastructure requires clearing vast amount of land, leading to deforestation and the destruction of natural habitats[35].

Examples

edit

Australia

  • Bendigo  
  • Kalgoorlie  

Brazil

Canada

France

Ghana

Burkina Faso

Kazakhstan

Russia

  • Berezovsk

USA

  • Mother Lode Homestake[43]

References

edit
  1. ^ D. I Groves, R. J Goldfarb, M Gebre-Mariam, S. G Hagemann, F Robert (1998-04-01), "Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types", Ore Geology Reviews (in German), vol. 13, no. 1, pp. 7–27, doi:10.1016/S0169-1368(97)00012-7, ISSN 0169-1368, retrieved 2021-02-15{{citation}}: CS1 maint: multiple names: authors list (link)
  2. ^ David I Groves, Richard J Goldfarb, Carl M Knox-Robinson, Juhani Ojala, Stephen Gardoll (2000-09-01), "Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn Block, Western Australia", Ore Geology Reviews (in German), vol. 17, no. 1, pp. 1–38, doi:10.1016/S0169-1368(00)00002-0, ISSN 0169-1368, retrieved 2021-02-15{{citation}}: CS1 maint: multiple names: authors list (link)
  3. ^ a b c Franco Pirajno (2009), Hydrothermal Processes and Mineral Systems (in German), doi:10.1007/978-1-4020-8613-7, ISBN 978-1-4020-8612-0
  4. ^ Richard J. Goldfarb, David I. Groves (2015-09-15), "Orogenic gold: Common or evolving fluid and metal sources through time", Lithos, Geochemistry and Earth Systems – A Special Issue in Memory of Robert Kerrich (in German), vol. 233, pp. 2–26, Bibcode:2015Litho.233....2G, doi:10.1016/j.lithos.2015.07.011, ISSN 0024-4937, retrieved 2021-02-10
  5. ^ F. L. ELMER, R. W. WHITE, R. POWELL (August 2006), "Devolatilization of metabasic rocks during greenschist-amphibolite facies metamorphism", Journal of Metamorphic Geology (in German), vol. 24, no. 6, pp. 497–513, Bibcode:2006JMetG..24..497E, doi:10.1111/j.1525-1314.2006.00650.x, ISSN 0263-4929, S2CID 129024356, retrieved 2021-02-17{{citation}}: CS1 maint: multiple names: authors list (link)
  6. ^ Goldfarb, R. J; Groves, D. I; Gardoll, S (2001-04-01). "Orogenic gold and geologic time: a global synthesis". Ore Geology Reviews. 18 (1): 1–75. doi:10.1016/S0169-1368(01)00016-6. ISSN 0169-1368.
  7. ^ Gaboury, Damien (2019-07-03). "Parameters for the formation of orogenic gold deposits". Applied Earth Science. 128 (3): 124–133. doi:10.1080/25726838.2019.1583310. ISSN 2572-6838.
  8. ^ Davies, Rhys S.; Groves, David I.; Trench, Allan; Dentith, Michael; Sykes, John P. (2020-06-01). "Appraisal of the USGS Three-Part Mineral Resource Assessment through estimation of the orogenic gold endowment of the Sandstone Greenstone Belt, Yilgarn Craton, Western Australia". Mineralium Deposita. 55 (5): 1009–1028. doi:10.1007/s00126-019-00916-1. ISSN 1432-1866.
  9. ^ Tailings and mine waste '02 : proceedings of the Ninth International Conference on Tailings and Mine Waste, Fort Collins, Colorado, USA, 27-30 January 2002. Colorado State University. Geotechnical Engineering Program. Rotterdam, Netherlands: A.A. Balkema. 2002. ISBN 90-5809-353-0. OCLC 49732982.{{cite book}}: CS1 maint: others (link)
  10. ^ Pitcairn, I K (2011-03-01). "Background concentrations of gold in different rock types". Applied Earth Science. 120 (1): 31–38. doi:10.1179/1743275811Y.0000000021. ISSN 0371-7453.
  11. ^ "Drill Results". O3 Mining. Retrieved 2023-02-20.
  12. ^ "Open-pit mining". doi:10.1036/1097-8542.470300. {{cite journal}}: Cite journal requires |journal= (help)
  13. ^ Githiria, J.; Musingwini, C. (2019). "A stochastic cut-off grade optimization model to incorporate uncertainty for improved project value". Journal of the Southern African Institute of Mining and Metallurgy. 119 (3). doi:10.17159/2411-9717/2019/v119n3a1.
  14. ^ Goldfarb, R.J; Groves, D.I; Gardoll, S (2001-04). "Orogenic gold and geologic time: a global synthesis". Ore Geology Reviews. 18 (1–2): 1–75. doi:10.1016/S0169-1368(01)00016-6. {{cite journal}}: Check date values in: |date= (help)
  15. ^ Goldfarb, R.J; Groves, D.I; Gardoll, S (2001-04). "Orogenic gold and geologic time: a global synthesis". Ore Geology Reviews. 18 (1–2): 1–75. doi:10.1016/S0169-1368(01)00016-6. {{cite journal}}: Check date values in: |date= (help)
  16. ^ "Invisible gold in the Archean detrital sulphides of the Witwatersrand tailings dumps: A large and under-exploited gold resource". www.researchsquare.com. 2022-11-01. doi:10.21203/rs.3.rs-1986949/v2. Retrieved 2023-02-20.
  17. ^ Groves, D. I.; Condie, K. C.; Goldfarb, R. J.; Hronsky, J. M. A.; Vielreicher, R. M. (2005-03-01). "100th Anniversary Special Paper: Secular Changes in Global Tectonic Processes and Their Influence on the Temporal Distribution of Gold-Bearing Mineral Deposits". Economic Geology. 100 (2): 203–224. doi:10.2113/gsecongeo.100.2.203. ISSN 0361-0128.
  18. ^ Goldfarb, R.J; Groves, D.I; Gardoll, S (2001-04). "Orogenic gold and geologic time: a global synthesis". Ore Geology Reviews. 18 (1–2): 1–75. doi:10.1016/S0169-1368(01)00016-6. {{cite journal}}: Check date values in: |date= (help)
  19. ^ Goldfarb, R.J; Groves, D.I; Gardoll, S (2001-04). "Orogenic gold and geologic time: a global synthesis". Ore Geology Reviews. 18 (1–2): 1–75. doi:10.1016/S0169-1368(01)00016-6. {{cite journal}}: Check date values in: |date= (help)
  20. ^ Sillitoe, Richard H.; Goldfarb, Richard J.; Robert, François; Simmons, Stuart F. (2020). Geology of the World’s Major Gold Deposits and Provinces. Society of Economic Geologists. doi:10.5382/sp.23. ISBN 978-1-62949-312-1.
  21. ^ Goldfarb, R.J; Groves, D.I; Gardoll, S (2001-04). "Orogenic gold and geologic time: a global synthesis". Ore Geology Reviews. 18 (1–2): 1–75. doi:10.1016/S0169-1368(01)00016-6. {{cite journal}}: Check date values in: |date= (help)
  22. ^ Groves, D. I.; Condie, K. C.; Goldfarb, R. J.; Hronsky, J. M. A.; Vielreicher, R. M. (2005-03-01). "100th Anniversary Special Paper: Secular Changes in Global Tectonic Processes and Their Influence on the Temporal Distribution of Gold-Bearing Mineral Deposits". Economic Geology. 100 (2): 203–224. doi:10.2113/gsecongeo.100.2.203. ISSN 0361-0128.
  23. ^ Goldfarb, R.J; Groves, D.I; Gardoll, S (2001-04). "Orogenic gold and geologic time: a global synthesis". Ore Geology Reviews. 18 (1–2): 1–75. doi:10.1016/S0169-1368(01)00016-6. {{cite journal}}: Check date values in: |date= (help)
  24. ^ Goldfarb, R.J; Groves, D.I; Gardoll, S (2001-04). "Orogenic gold and geologic time: a global synthesis". Ore Geology Reviews. 18 (1–2): 1–75. doi:10.1016/S0169-1368(01)00016-6. {{cite journal}}: Check date values in: |date= (help)
  25. ^ Goldfarb, R.J; Groves, D.I; Gardoll, S (2001-04). "Orogenic gold and geologic time: a global synthesis". Ore Geology Reviews. 18 (1–2): 1–75. doi:10.1016/S0169-1368(01)00016-6. {{cite journal}}: Check date values in: |date= (help)
  26. ^ Goldfarb, R. J; Groves, D. I; Gardoll, S (2001-04-01). "Orogenic gold and geologic time: a global synthesis". Ore Geology Reviews. 18 (1): 1–75. doi:10.1016/S0169-1368(01)00016-6. ISSN 0169-1368.
  27. ^ Goldfarb, R. J; Groves, D. I; Gardoll, S (2001-04-01). "Orogenic gold and geologic time: a global synthesis". Ore Geology Reviews. 18 (1): 1–75. doi:10.1016/S0169-1368(01)00016-6. ISSN 0169-1368.
  28. ^ Goldfarb, R. J; Groves, D. I; Gardoll, S (2001-04-01). "Orogenic gold and geologic time: a global synthesis". Ore Geology Reviews. 18 (1): 1–75. doi:10.1016/S0169-1368(01)00016-6. ISSN 0169-1368.
  29. ^ Tailings and mine waste '02 : proceedings of the Ninth International Conference on Tailings and Mine Waste, Fort Collins, Colorado, USA, 27-30 January 2002. Colorado State University. Geotechnical Engineering Program. Rotterdam, Netherlands: A.A. Balkema. 2002. ISBN 90-5809-353-0. OCLC 49732982.{{cite book}}: CS1 maint: others (link)
  30. ^ Donato, D. B.; Nichols, O.; Possingham, H.; Moore, M.; Ricci, P. F.; Noller, B. N. (2007-10-01). "A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife". Environment International. 33 (7): 974–984. doi:10.1016/j.envint.2007.04.007. ISSN 0160-4120.
  31. ^ Hettler, J.; Irion, G.; Lehmann, B. (1997-05-26). "Environmental impact of mining waste disposal on a tropical lowland river system: a case study on the Ok Tedi Mine, Papua New Guinea". Mineralium Deposita. 32 (3): 280–291. doi:10.1007/s001260050093. ISSN 0026-4598.
  32. ^ Abdelaal, Ahmed; Sultan, Mohamed; Elhebiry, Mohamed; Krishnamurthy, R. V.; Sturchio, Neil (2021-01-01). "Integrated studies to identify site-specific parameters for environmentally benign mining operations: A case study from the Sukari Gold Mine, Egypt". Science of The Total Environment. 750: 141654. doi:10.1016/j.scitotenv.2020.141654. ISSN 0048-9697.
  33. ^ Henderson, Shirley (1995-10). "Environmental disaster declared after cyanide spill". Marine Pollution Bulletin. 30 (10): 630. doi:10.1016/0025-326X(95)90321-2. {{cite journal}}: Check date values in: |date= (help)
  34. ^ Ulrich, Sam; Trench, Allan; Hagemann, Steffen (2022-03-15). "Gold mining greenhouse gas emissions, abatement measures, and the impact of a carbon price". Journal of Cleaner Production. 340: 130851. doi:10.1016/j.jclepro.2022.130851. ISSN 0959-6526.
  35. ^ Caballero Espejo, Jorge; Messinger, Max; Román-Dañobeytia, Francisco; Ascorra, Cesar; Fernandez, Luis E.; Silman, Miles (2018-12). "Deforestation and Forest Degradation Due to Gold Mining in the Peruvian Amazon: A 34-Year Perspective". Remote Sensing. 10 (12): 1903. doi:10.3390/rs10121903. ISSN 2072-4292. {{cite journal}}: Check date values in: |date= (help)CS1 maint: unflagged free DOI (link)
  36. ^ Goldfarb, R. J; Groves, D. I; Gardoll, S (2001-04-01). "Orogenic gold and geologic time: a global synthesis". Ore Geology Reviews. 18 (1): 1–75. doi:10.1016/S0169-1368(01)00016-6. ISSN 0169-1368.
  37. ^ Stromberg, Jessica; Barr, Erik; Van Loon, Lisa; Gordon, Robert; Banerjee, Neil (January 2019). "Fingerprinting multiple gold mineralization events at the Dome mine in Timmins, Ontario, Canada: Trace element and gold content of pyrite". Ore Geology Reviews. 104: 603–619. doi:10.1016/j.oregeorev.2018.11.020. S2CID 133955095.
  38. ^ Daver, Lucille; Jebrak, Michel; Beaudoin, Georges; Trumbull, Robert (May 2020). "Three-stage formation of greenstone-hosted orogenic gold deposits in the Val-d'Or mining district, Abitibi, Canada: Evidence from pyrite and tourmaline" (PDF). Ore Geology Reviews. 120: 103449. doi:10.1016/j.oregeorev.2020.103449. S2CID 216245596.
  39. ^ Demange, M.; Pascal, M.- L.; Raimbault, L.; Armand, J.; Forette, M. C.; Serment, R.; Touil, A. (2006-01-01). "The Salsigne Au-As-Bi-Ag-Cu Deposit, France". Economic Geology. 101 (1): 199–234. doi:10.2113/gsecongeo.101.1.199. ISSN 0361-0128.
  40. ^ Sillitoe, Richard H.; Goldfarb, Richard J.; Robert, François; Simmons, Stuart F. (2020-01-01). Geology of the World's Major Gold Deposits and Provinces. Society of Economic Geologists. doi:10.5382/sp.23. ISBN 978-1-62949-642-9. S2CID 244342176.
  41. ^ Marcoux, E.; Milesi, J. P. (1993-11-01). "Lead isotope signature of early Proterozoic ore deposits in western Africa; comparison with gold deposits in French Guiana". Economic Geology. 88 (7): 1862–1879. doi:10.2113/gsecongeo.88.7.1862. ISSN 1554-0774.
  42. ^ Franco Pirajno (2009), Hydrothermal Processes and Mineral Systems (in German), doi:10.1007/978-1-4020-8613-7, ISBN 978-1-4020-8612-0
  43. ^ Morelli, Ryan M.; Bell, Chris C.; Creaser, Robert A.; Simonetti, Antonio (June 2010). "Constraints on the genesis of gold mineralization at the Homestake Gold Deposit, Black Hills, South Dakota from rhenium–osmium sulfide geochronology". Mineralium Deposita. 45 (5): 461–480. doi:10.1007/s00126-010-0284-9. ISSN 0026-4598. S2CID 46991356.