Phenomics has widespread applications in the agricultural industry. With an exponentially growing population and inconsistent weather patterns due to global warming, it has become increasingly difficult to cultivate enough crops to support the world’s population. Advantageous genomic variations, like drought and heat resistance, can be identified through the use of phenomics to create more durable GMOs[1]. ASH13E

Phenomics is also a large part of the Human Genome Project[2]

   http://dx.doi.org/10.1016/j.tplants.2011.09.005

  1. ^ Rahman, Hifzur; Ramanathan, Valarmathi; Jagadeeshselvam, N.; Ramasamy, Sasikala; Rajendran, Sathishraj; Ramachandran, Mahendran; Sudheer, Pamidimarri D. V. N.; Chauhan, Sushma; Natesan, Senthil (2015-01-01). Barh, Debmalya; Khan, Muhammad Sarwar; Davies, Eric (eds.). PlantOmics: The Omics of Plant Science. Springer India. pp. 385–411. doi:10.1007/978-81-322-2172-2_13#page-1. ISBN 9788132221715.
  2. ^ Freimer, Nelson; Sabatti, Chiara. "The Human Phenome Project". Nature Genetics. 34 (1): 15–21. doi:10.1038/ng0503-15.