User:Adam1996M/Sacramento River

Article Draft edit

Ecology and environmental issues

copied from Sacramento River The Sacramento River and its drainage basin once supported extensive riparian habitat and marshes, in both the Sacramento Valley and the Delta, home to a diverse array of flora and fauna. Due to the reclamation of land for agriculture and the regulation of seasonal flooding, the amount of water-based habitat declined greatly during the 20th century. Other human impacts include the heavy water consumption for agriculture and urban areas, and pollution caused by pesticides, nitrates, mine tailings, acid mine drainage and urban runoff. The Sacramento supports 40–60 species of fish, and 218 species of birds. The basin also has a number of endemic amphibian and fish species. Many Sacramento River fish species are similar to those in the SnakeColumbia River systems; geologic evidence indicates that the two were connected by a series of wetlands and channels about 4-5 million years ago.

UC Davis initiated a project known as The Nigiri Project which takes place under the Yolo Bypass in the rice field floodplains adjacent to the Sacramento River. The name comes from a form of Japanese sushi which contains a slice of fish on top of a compressed wedge of vinegared rice, therefore a relationship with rice and fish. Salmon migrate from the Central Valley rivers to the ocean where they increase in size for one to three years then return to rivers to spawn, if a young fish is more large when they enter the ocean, they will have more of a chance to return for spawning. According to UC Davis Center for Watershed Sciences these rice fields adjacent to the Sacramento River will serve as potential nurseries for salmon. UC Davis also concluded from past experimental releases of salmon, that the Yolo Bypass floodway could have up to 57,000 acres of a productive breeding habitat with almost no cost to farmers. The Nigiri project has demonstrated off-season agriculture fields such as the rice fields under the Yolo Bypass next to Sacramento River can serve as an important floodplain habitat and feeding ground for juvenile or endangered fish. UC Davis noted juveniles grew much bigger and faster within the flooded rice fields when compared to those released in the Sacramento River. Public agencies, conservation groups and landowners have all been working together and conducting experiments since 2011. Experiments conducted on rice fields have taken place at the Knaggs Ranch property within the Yolo Bypass by Sacramento River for four consecutive winters. UC Davis shares their results produced the fastest growth of juvenile Chinook salmon in the Central Valley to ever be recorded. The Nigiri project is attempting to see these floodplains as “surrogate wetlands” which can be controlled to copy the Sacramento River system’s annual natural flooding cycle the native fish depend on. Runoff water from agriculture is used to flood the fields for most of this experiment adjacent to the Sacramento River. The recycled water is eventually flushed back into the Delta ecosystem through agricultural canals, meaning no new water is used to perform the experiment. [1]

copied from Sacramento River Located along the Pacific Flyway, the sprawling wetlands of the Sacramento Valley are an important stop for migratory birds; however, only a fraction of the historic wetlands remain. Seasonally flooded rice paddies in the Sacramento Valley comprise a large portion of the habitat currently used by migrating birds. Native bird populations have been declining steadily since the 19th century. Species that were once common but now are endangered or gone include the southwestern willow flycatcher, western yellow-billed cuckoo, least Bell's vireo, and warbling vireo. Another reason for dropping numbers are the introduction of non-native species, such as the "parasitic" cowbird, which lays its eggs in the nests of other bird species causing its hatchlings to compete with the others for food.

There were once 9 species of amphibians that used the Sacramento River, but some have become extinct and most other populations are declining due to habitat loss caused by agriculture and urban development. Amphibians originally thrived in the marshes, sloughs, side-channels and oxbow lakes because of their warmer water, abundance of vegetation and nutrients, lower predator populations and slower current. This population once included several species of frogs and salamanders; the foothill yellow-legged frog and western spadefoot are listed as endangered species.

Riparian and wetlands areas along the Sacramento once totaled more than 500,000 acres (2,000 km2); today only about 10,000 acres (40 km2) remains. Much of this consists of restored stretches and artificially constructed wetlands. Levee construction has prevented the river from changing course during winter and spring floods, which was crucial to the renewal of existing wetlands and the creation of new ones. Since the late 19th century the river has been mostly locked in a fixed channel, which once could shift hundreds of feet or even several miles in a year because of floods. In 2010, about 100 miles (160 km) of the river's riparian forests are undergoing active restoration. POLLUTION;

Pollution

copied from Sacramento River For a river of its size, the Sacramento is considered to have fairly clean water. However, pollutants still flow into the river from many of its tributaries and man-made drains or channels. Pesticide runoff, especially DDT, is one of the largest problems faced today, because of the valley's primarily agricultural economy. Increased erosion caused by the removal of riparian vegetation and the runoff of fertilizers into the river have led to occasional algae blooms, though the water is usually cold because of the regulation of dams upstream. Other pollutant sources include urban runoff, mercury and even rocket fuel that was reported to have leaked near the American River from an Aerojet extraction project.

Mercury pollution created by mining and processing activities during the California Gold Rush still has a profound impact on the Sacramento River's environment. According to Domagalski of the USGS, Mercury is currently considered the most serious water-quality problem in the Sacramento River. Mercury is unique because it is the heaviest liquid in existence, it is the only heavy metal that is a liquid at room temperature and it readily vaporizes into the atmosphere. The toxic substance was widely used by miners to separate gold from the surrounding rocks and dirt, and was disposed of by allowing it to evaporate. Most of the mercury was mined in the Coast Ranges to the west of the Sacramento River; mines in these mountains produced roughly 140,000 tons of mercury to serve the Gold Rush. When the gold rush ended, most of the mines were closed but toxic acidic water and chemicals continue to leak from within, into west-side Sacramento tributaries such as Cache Creek and Putah Creek. According to the Sacramento Watershed River Program, an abandoned mercury mine, which is currently an EPA superfund site, is located in the Cache Creek area in the Sacramento River, called the Sulfur Bank Mercury Mine, which is still releasing mercury with leachate into Clear Lake which is close by. This site along with other former mine sites add to the contamination of Cache Creek which is estimated to be responsible for 50% of mercury taken to the Bay Delta area every year. In the east, mercury that permeated into the ground has contaminated several aquifers that feed rivers such as the Feather, Yuba and American. Even the evaporated mercury posed problems – so much of it was used that significant concentrations still linger in the air in many places. According to Griffin with the Sacramento Water Action Team, Mercury cannot naturally escape or dissipate and will be brought down into the soils and sediment to pollute and react with, in some of these cases methane can be produced from the mercury which will contribute to the greenhouse gases and is another contributing issue with mercury pollution, ecological alteration of the Sacramento River and climate change. Griffin shares, "Mercury and its compounds readily attach to particulate material in soil and sediment. In the presence of living organisms ionic mercury can transform into monomethyl mercury and dimethylmercury. When exposed to sunlight the (di)methylmercury is photodegraded to monomethyl mercury, usually near the surface of water, and methane gas is released”. According to the USGS 2016, the mercury release leaves a permanent imprint not only in the Sacramento River Watershed but also in peat bogs, snowcapped glaciers and sediments up to hundreds and thousands of miles away. Mercury pollution continues today and will probably continue for decades or centuries into the future. [2] [3] [4]

Another form of pollution the Sacramento River is suffering from is plastic pollution. According to researchers from University of Berkley, they recorded over 7 trillion microplastics are deposited in the San Francisco Bay each year with the Sacramento River being a major contributor. They also found one fourth of microplastics in California’s fish’s stomach’s such as the anchovy, striped bass and salmon.[5]

copied from Sacramento River In July 1991, a train derailed near Dunsmuir, California alongside the Sacramento River. A tank car split open, spilling about 19,500 gallons of the pesticide metam sodium into the river. The chemical formed a stinking, bubbling, green glob that moved 45 miles (72 km) down the river, killing everything in its path. More than one million fish were killed, including at least 100,000 rainbow trout, and thousands of other aquatic creatures as well as nearby trees. Next, the green glob entered Shasta Lake, California's largest reservoir. Fortunately, a system of aerating pipes at the bottom of the lake had been set up to dissipate the chemical, reducing it to almost nothing by the 29th, preventing further environmental destruction. The tank car carrying the metam sodium through California was of a type that the National Transportation Safety Board said had "a high incidence of failure" in accidents. Furthermore, the tank car was not labeled, so the train's crew was unaware of the danger posed by the chemical.

 
Improvement in water quality throughout the Sacramento and Feather River through the reduction of diazinon concentrations.

Diazinon was a major pollution problem in the Sacramento River which would originate from agricultural and urban storm water discharges. Diazinon is used for orchards which grow peaches, plums, and almonds to mitigate the number of insects and pests like spider mites and aphids. A wide variety of organizations and groups came together to reduce diazinon concentrations in the Sacramento and Feather River systems. Their collaboration and hard work led to the removal of 79 river miles from the 303(d) list for diazinon impairments in 2010 according to the Environmental Protection Agency. [6]

References edit

  1. ^ Cite error: The named reference :2 was invoked but never defined (see the help page).
  2. ^ "USGS - NAWQA - Water Quality in the Sacramento River Basin - Major Findings". pubs.usgs.gov. Retrieved 2022-05-13.
  3. ^ Cite error: The named reference :3 was invoked but never defined (see the help page).
  4. ^ Cite error: The named reference :4 was invoked but never defined (see the help page).
  5. ^ Cite error: The named reference :0 was invoked but never defined (see the help page).
  6. ^ Cite error: The named reference :1 was invoked but never defined (see the help page).

[1]

[2][3][4]

[5]

  1. ^ "Pollution in the Sacramento River and Hope for Its Future". Earth5R. 2020-07-08. Retrieved 2022-05-13.
  2. ^ US EPA, REG 09 (2012-12-12). "Feather and Sacramento Rivers Watersheds". www.epa.gov. Retrieved 2022-05-13.{{cite web}}: CS1 maint: numeric names: authors list (link)
  3. ^ Kerlin, Katherine E. (2016-02-23). "Nigiri Project Mixes Salmon and Rice Fields for Fifth Year on Floodplain". UC Davis. Retrieved 2022-05-13.
  4. ^ Griffin, Dan (2018). "Sacramento Water Action Team" (PDF). wrc.udel.edu.pdf (PDF). Retrieved May 12, 2022. {{cite web}}: Check |archive-url= value (help); External link in |url-status= (help); Invalid |url-status=[[1]] (help)
  5. ^ "Mercury – Sacramento River Watershed Program". Retrieved 2022-05-13.