Talk:Newton–Wigner localization

The Reeh-Schlieder theorem asserts the vacuum and certain other states to be spacelike superentangled relative to local fields. This motivates an inquiry into the physical status of various concepts of localization. It is argued that a covariant generalization of Newton-Wigner localization is a physically illuminating concept. When analyzed in terms of nonlocally covariant quantum fields, creating and annihilating quanta in Newton-Wigner localized states, the vacuum is seen to not possess the spacelike superentanglement that the Reeh-Schlieder theorem displays relative to local fields, and to be locally empty as well as globally empty. Newton-Wigner localization is then shown to be physically interpretable in terms of a covariant generalization of the center of energy, the two localizations being identical if the system has no internal angular momentum. Finally, some of the counterintuitive features of Newton-Wigner localization are shown to have close analogues in classical special relativity.

book cited: Fleming, Gordon N. (1998) Reeh-Schlieder meets Newton-Wigner.