Talk:Moving equilibrium theorem

Latest comment: 17 years ago by Miaoku in topic References

Suggestions

edit
  • Maybe the concept of "fast" and "slow" could be explained (or a link could be added).
  • Also, I think it's not obvious what "approximates" means.
  • I was wondering who proved the theorem? Are there other versions for nonlinear systems?
  • I suggest reorganizing the article like this:

The Moving Equilibrium Theorem suggested by Lotka states that for a system of linear differential equations in two real variables dependent on time, where one changes comparatively slow and the other fast, the difference in time scale allows you to approximate solutions of the system by solving the equations separately.

The theorem permits reducing high-dimensional dynamical problems to lower dimensions and underlies Alfred Marshall's temporary equilibrium method.

For a proper statement of the theorem, consider a dynamical system

 

 

with state variables   and  . Assume that   is fast and   is slow. Assume that for any fixed  , equation (1) has an asymptotically stable solution  . Substituting this for   in (2) yields

 .

Here   has been replaced by   to indicate that the solution   obtained from (3) differs from the solution for   obtainable from the system (1), (2). The theorem asserts that the solution for   approximates the solution for  , provided the partial system (1) is heavily damped (fast) for any given  .

References

edit
  • Schlicht, E. (1985). Isolation and Aggregation in Economics. Springer Verlag. ISBN 0-387-15254-7.
  • Schlicht, E. (1997). "The Moving Equilibrium Theorem again". Economic Modelling. 14: 271–278.

Miaoku 22:25, 17 August 2007 (UTC)Reply