Talk:Image (category theory)

Latest comment: 1 year ago by Fourier-Deligne Transgirl in topic Clarification added

Is 'I' special? edit

The article doesn't really explain what the object 'I' is. Is it some special object, or just any object? 70.112.187.225 (talk) 05:49, 20 November 2009 (UTC)Reply

Indeed the statement that f is monic iff f = Im(f) is false - or at least "=" isn't the right relator to use. For example, in the category of sets we can have three distinct singleton sets (objects) A, B, C, with f:A->B, g:C->B, and h:A->C the bijections, so that g is an image of f, but g is not equal to f as it is not even a map from A to B. I think it should read "f is monic iff f is an image of f". Similarly in the definition, it should read "an image of f is..." rather than "the image of f is...", or alternatively define an equivalence class of morphisms to be the image of f. Rfs2 (talk) 13:03, 25 July 2013 (UTC)Reply

Image of group homomorphism does not have image of underlying map as underlying set. edit

In the section ‘Examples’, it is stated: ″In many concrete categories such as groups, abelian groups and (left- or right) modules, the image of a morphism is the image of the correspondent morphism in the category of sets.″

However, i think that for the inclusion of a non-normal subgroup H in G, the image (in groups) of that morphism is the normal closure of H in G, not just H: Take as an example G=S_3 and H = {(1,2), id}. We have the inclusion morphism i: H → G. The cokernel of i is the trivial morphism G → 1 into the trivial group, since any map f: G → A into any group A for which fi: H → A is trivial (i.e. for which (1,2) is sent to 1) will identify the normal closure of H, that is the whole of G. And the kernel of f is obviously the identity id: G → G. So im(i)=ker(coker(i))= id_G. The image object is thus G, not H.

Can anybody verify this and/or check/correct the cited sentence? Palindnilap (talk) 12:50, 28 June 2021 (UTC)Reply

Clarification added edit

@69.143.122.185: Clarification added. The W in the diagram is an arbitrary object, witnessing the universality of the equalizer; this is the standard definition of equalizer. --Fourier-Deligne Transgirl (talk) 18:48, 7 November 2022 (UTC)Reply