Archive 10Archive 12Archive 13Archive 14Archive 15Archive 16Archive 20

Please!

I have 'undone' here [1]

It is a fact that the internal energy of an isolated system is conserved, that is why it is called isolated.

Whatever the 'law' says or requires or even demands, it does not govern the facts. --Damorbel (talk) 17:50, 6 February 2013 (UTC)

Suppose an isolated system was in a state of absolute motion. How would it know its (heat) condition of kinetic energy of motion?WFPM (talk) 00:16, 6 March 2013 (UTC)

Would you please explain what ". . . a state of absolute motion" is? --Damorbel (talk) 12:41, 8 March 2013 (UTC)
The kinetic energy of motion of a material substance is supposed to be a function of its velocity squared. Like the earth for instance. But we don't know the absolute velocity of the earth. So we don't know its absolute value of kinetic energy of motion. When it comes to motion, we work with relative values. And when we deal with orbital mechanics we make the assumption that the absolute motion of the entire considered system is not relevant to our calculations. Don't we?WFPM (talk) 01:52, 23 March 2013 (UTC)

Temperature as a measure of Heat?

Since the common concept of heat is its association with 'hotness' or 'coldness' i.e. temperature, surely this should be explained in the opening section as well as the role of temperature difference? --Damorbel (talk) 16:45, 8 March 2013 (UTC)

The sentence you added is incorrect according to the standard, technical definition of heat, and directly contradicted the paragraphs before and after it in the article. It's also incorrect according to the non-technical, intuitive definition (how hot something feels when you touch it or stand close to it is only partly determined by its temperature). Waleswatcher (talk) 15:39, 10 March 2013 (UTC)

Currently the article says:-

Heat flow from hotter to colder systems occurs spontaneously

which makes heat independent of temperature, it would also make heat a conserved quantity. Would you care to confirm that this is what you mean? --Damorbel (talk) 21:27, 10 March 2013 (UTC)

Heat is not a conserved quantity, nor does it make sense to say that it is "independent of temperature" (I'd say that's on the wrong end of not even wrong). So no, that's not what I mean. Waleswatcher (talk) 22:15, 10 March 2013 (UTC)

If heat is not independent of temperature, why does the article, in the opening statement, say " Heat flow from hotter to colder systems occurs spontaneously, "? This statement makes the position (of the article) very clear, that heat is proportional to the difference in temperature, i.e. very clearly not a function of temperature. Is this correct? --Damorbel (talk) 06:48, 11 March 2013 (UTC)

definition of quantity of energy transferred as heat

There have been countless electrons spilt here on the definition of quantity of energy transferred as heat for this article. I hope I may be forgiven for saying some more about it. I have to say that I think my understanding has improved over the years. In particular I have to say I was partly mistaken in my strictures upon Count Iblis, and I would like to say I am sorry for the times when I went over the top. The matter is not one-sided. I made much of the idea that temperature has to be definable for heat to make sense. I would now speak more carefully. Count Iblis wrote: "Work doesn't have to be mechanical work. The work done by a system is defined as the decrease in the internal energy of a system due to the change of its external parameters." This is one way of seeing things. I would say that in the Carathéodory story, the decrease of internal energy of the system is defined as derived from the measured adiabatic work needed for the change of state. In the Gibbs story, one postulates directly the existence of the internal energy and doesn't derive it from work; of course still one can specialize to a closed system and then derive the work from the postulated internal energy.

I will now try here to say how I think quantity of energy transferred as heat should be defined here.

Quantity of energy transferred as heat is a term of thermodynamics that refers to a specified change of state of a closed system. The initial and final states of the system have defined temperatures and pressures. The quantity of energy transferred as heat is defined as a difference between two quantities of energy transferred as work. One of those quantities is the amount of adiabatic work needed to go between the initial and final state of the change; it refers to the specified change of state only through its initial and final states. The other is the amount of work done by the system on its surroundings during the specified change. This work is in general not adiabatic, and in general includes pressure-volume work and isochoric work. It depends only on the time course of the values of the external variables, including those such as the forces exerted by the surroundings on the walls of the system. How those forces are specified is important. If the work is mediated by a piston, then the external forces that determine the motion of the piston need to be defined. The piston may be driven by a rod. Then the force exerted by the rod on the piston must be specified. The external pressure on the external surface of the piston must also be specified throughout the course of the process, though it might be neglibly small. (I formerly insisted that if that pressure could not be defined during the course of the specified process, then the work could not be defined; that is true. Moreover I insisted that when that pressure was not defined, the external temperature was most likely also not defined. Therefore, I argued, when the external temperature was not defined, the work was not defined. I went too far there. It might sometimes be that the external pressure is defined while external temperature is not; still the work would be defined, as Count Iblis pointed out.) There is no requirement by definition that the external and internal temperatures and piston pressures be equal during the course of the process, but respectively they must be equal in the initial state and in the final state, which are respectively required by classical thermodynamics to be in thermal and mechanical equilibrium with the surroundings.Chjoaygame (talk) 10:44, 12 March 2013 (UTC)

Chjoaygame you write:-
Quantity of energy transferred as heat is a term of thermodynamics that refers to a specified change of state of a closed system. The initial and final states of the system have defined temperatures and pressures. The quantity of energy transferred as heat is defined as a difference between two quantities of energy transferred as work.
This statement is too restrictive. If the changes result in The initial and final states of the system hav[ing] defined temperatures and pressures then you will be dealing with a system where heat is conserved, your argument does not allow for potential energy. The perfection of an ideal gas matters not, even if such an ideal existed, you would still have to allocate some stress energy to the walls of the container. --Damorbel (talk) 11:41, 12 March 2013 (UTC)

what page in the source?

This edit proposes that a sentence about conduction, cited in the article, appears on page 1 of Partington 1949. In the copy I have here it appears on page 118, and not on page 1. Perhaps the creator of the edit would very kindly tell how he is accessing the source?Chjoaygame (talk) 08:25, 13 March 2013 (UTC)

I've restored this question because it is highly relevant.
In the article all the references are made to a text book by J. R. Partington:-
An Advanced Treatise on Physical Chemistry Vol 1: Fundamental Principles (ISBN 0471668176 )
This book is difficult but not impossible to find. It is a text book thus not automatically a reliable source.
Partington wrote another book:
A Text-Book of Thermodynamics; (With Special Reference to Chemistry)ISBN1152051253
First published in 1913 - it can be found on line. This book is far more compact than "An Advanced Treatise..." and serves quite well as an introduction to thermodynamics but it is only a text book.
Partington was a respected teacher of (Physical) chemistry but did not make any contributions to science as did Clausius, Boltzmann, Planck, Maxwell and others, works by these pioneers are freely available and have the great merit of allowing the reader to follow the intellectual developement of the subject, they are far superior to text books published by teachers. If it is absolutely necessary to reference a text book the relevant passage should be cited as fully as possible, a mere reference to the entire book serves no purpose. --Damorbel (talk) 09:48, 13 March 2013 (UTC)

Convection?

From the beginning paragraph "heat is energy transferred from one body to another by thermal interactions." Convection therefore is not a method of heat transfer as the heat is retained by the body and the body itself moved. Strictly speaking convection is a special form of conduction - conduction in a fluid. FlipC (talk) 10:53, 14 March 2013 (UTC)

Interesting. First a trivial point. The clause "Heat is energy tranferred from one body to another by thermal interactions" is chatty but hardly informative. The source for it is Reif, but it is not an exact quote from Reif, who writes of "purely thermal interactions". Without some further definition, "thermal interactions" is a pleonasm for 'heat'. It says nothing that 'heat' does not say. So it is not useful to use the word 'therefore' when interpreting that lead clause.
Now to the substance of your comment. Is convection a form of heat transfer that should be recognized in this article? In the lead of this article? We have one editor who says it is, and I suppose there will be others. You seem to have two views, that it is not (because "the heat is retained by the body and the body itself moved"), and that it is (because it is "conduction in a fluid"). At present I think that in general, in the present context, one should not simply say that convection is a form of transfer of energy as heat, but I think that under some conditions, convective circulation may be regarded as a form of transfer of energy as heat. In any case, convection is a conceptually more complex phenomenon than either thermal conduction or radiation. The exact mechanism of heat transfer is not an easy thing to define. How should this be expressed in the lead?Chjoaygame (talk) 20:49, 14 March 2013 (UTC)
If we use the term "thermal interactions" then one could include convection. On the other hand if we treat heat as a net exchange of energy from one body to another then we can't. When I use the term "conduction in a fluid" I refer to the actual exchange mechanism which leads to more complex actions due to the ability of the bodies to move. IOW conduction (and to a lesser extent radiation) in a fluid has greater ramifications than such in solids, but is not a new mechanism in its own right. Do we treat "transfer" as synonymous with "exchange" or with "movement"? FlipC (talk) 10:00, 22 March 2013 (UTC)
For me, 'thermal interaction' is not a well defined term. I think it is sloppy and evasive phraseology, and its presence there in the article is a regrettable blemish. I do not try to fix every blemish, not even very regrettable ones, because such an action can easily result in a fierce backlash that makes the 'fix' badly counterproductive.
I am unhappy to have had to look up 'IOW'.
I suppose there are many meanings to 'transfer'. I use it in this context to mean passage of a transiently conserved amount of an extensive quantity, such as mass, internal energy, or entropy, from one spatial compartment to another. I think it is synonymous with neither 'exchange' nor 'movement'.Chjoaygame (talk) 03:05, 23 March 2013 (UTC)

The Reif reference is to a textbook, so may well be unreliable. It's definition of heat is inconsistent in that it confuses heat and heat transfer. This is self contradictory, so not even wrong! --Damorbel (talk) 15:38, 23 March 2013 (UTC)

It would appear that the process of convection would not be a meaningful process for heat energy transfer because the environmental conditions related to the process are too variable and also not related to the fundamental properties of the heat content materials. I would think that the term heat would relate to the energy content of the concerned materials and is supposed to be equal to a function of their mass value plus their kinetic energy content.WFPM (talk) 19:32, 23 March 2013 (UTC)
WFPM, you write:-
too variable and also not related to the fundamental properties
do you have a source for this? I suggest your assertion is not clear, would you care to explain it further? --Damorbel (talk) 20:40, 23 March 2013 (UTC)
Well alright I've been asked to estimate the heat transfer of say an air conditioner but I couldn't do it because I couldn't determine the convective heat loss possibilities of the system due to the variables. I know how to get it down to practically zero by vacuum packaging it but that wasn't the question. And I could reduce the radiation heat losses with reflective external packaging but that wasn't the question either. So the question involves more than one independent set of physical conditions and process factors that doesn't let the question be meaningful. Only estimates can be made related to the specific properties and materials under consideration. That's the subject matter of thermodynamics which does a pretty good job at approximating the answers to the thermodynamic questions. And it's certainly not an exact science when I studied it in the sliderule days.WFPM (talk) 01:48, 24 March 2013 (UTC)
I understand from what you write that the theory of thermodynamics is inexact because of the difficulties in applyng it to airco? Almost all thermodynamic theory applies only to sysytems at or near equilibrium. It is usual to separate a complex thermodynamic system, such as air conditioner or rocket motors, into separate subsystems; a compressor, heat exchanger etc. for airco; combustion chamber and expansion nozzle for a rocket; and solve them individually. In this way the problem becomes more manageable but may well require a number of iterations to achieve a satisfactory result.
I am interested to discover if you consider these dfficulties with heat transfer calculations raise questions about the theory of heat. --Damorbel (talk) 06:36, 26 March 2013 (UTC)
The answer is Yes! The theory of heat is like the theory of energy, which is, What is it? And after we agree what it is, then we can talk about how it is moved from one place-situation to another. And heat, as far as I know, is just a physical condition of matter. Clerk Maxwell studied the problem of heat distribution in a gas and come up with his velocity distribution equations. That makes sense. But the transfer of heat is filled with lots of contingent conditions, like convection variables, that don't have anything to do with anything other than the considered process. And I think the subject matter related to the word heat should be as to what it is, and then you can go of on a tangent into some way it can be transferred and otherwise managed. But you seem to want to put all those subservient subject matters under the umbrella of the subject matter of heat, I guess because you want to worry about its transfer as part of the theory of its existence. Thermodynamics is an interesting (and complex) subject matter. But it involves a lot more variables than the subject of heat. And you're trying to crowed all that into your heat subject matter. I can see the word thermodynamics getting involved in a lot of stuff but the word heat should be limited in its definition.WFPM (talk) 16:19, 26 March 2013 (UTC) That means that when you say heat I think you're talking about the noun heat Calor)and not about the verb to heat (Calentar).WFPM (talk) 17:56, 26 March 2013 (UTC)

You write:-

The theory of heat is like the theory of energy

One of the features that distinguishes heat from energy is that energy is a conserved quantity, whereas it is a fundamental aspect of modern physics is that heat is not a conserved quantity. Is this included in your questions " about the theory of heat "? --Damorbel (talk) 06:32, 27 March 2013 (UTC)

A gas has heat due to the motion of its particles. I don't see how you can reduce the quantity of one of them without reducing the quantity of the other. Under a constant volume condition a quantity will remain at a certain temperature condition (with a certain temperature and heat content) unless something (Energy) is lost, in which case both the temperature and particle velocity will reduce.WFPM (talk) 19:13, 27 March 2013 (UTC)

The temperature of a solid rises when energy is added, the rising temperature means that the atoms (or molecules) of the solid vibrate with increasing amplitude until, at a particular temperature, the (crystaline?) bonds holding it in solid form, begin to break, it is melting.

Continuing to add energy breaks more bonds without increasing the temperature as more of the solid melts. Finally the solid is completely melted and the temperature starts rising again, with the molecular motion of the liquid increasing further. The amount of energy needed to melt (fuse) a solid is properly called the enthalpy of fusion but is popularly (and mistakenly) called the latent heat of fusion.

From this you can see adding energy can either raise the temperature i.e. increase the heat, or melt the solid when its temperature does not rise. This is similar to boiling - energy is added to a boiling liquid without raising it's temperature; this energy is called the enthalpy of vaporization, often (improperly) called latent heat of vaporization.

Enthalpy is a more accurate term than latent heat because it represents potential energy, the energy of the bonds holding atoms or molecules together in a solid, whereas heat is, as you noted, the kinetic energy of atoms and molecules. --Damorbel (talk) 21:30, 27 March 2013 (UTC)

Yes, but now you're talking about the amount of motion in a different category of phase of a material. So the particles acquire more energy and move faster and eventually break the bounds of stability of the phase. That's a detail. It's still matter in motion. And after we get to the gas phase, the problem settles down to what can happen to 22.4 liters of a gas at standard pressure and temperature. And Thermodynamics is where you worry about the details of that. And I guess I don't know enough about the fine points of Thermodynamics terminology definitions to be able to discuss those points of issue.WFPM (talk) 23:22, 27 March 2013 (UTC)WFPM (talk) 23:14, 27 March 2013 (UTC)

You write:-

amount of motion in a different category of phase of a material

Are you saying that this influences the relation of particle energy and temperature? If this was so there would be different Boltzmann constants for solids and liquids.

The argument I was putting is that both enthalpy (energy) of fusion and vapourisation are forms of potential energy arising from intermolecular forces, this is the conventional viewpoint and has been for a long time. Calling them (latent) heat of fusion or vapourisation introduces confusion between kinetic energy (heat) and potential energy. --Damorbel (talk) 07:30, 28 March 2013 (UTC)

Yes it's fascinating to note that we have this interrelationship between energy and temperature during the phase periods, and then the hiatus while the atom sorts out its internal energy storage (internal construction) problems. But heat energy is still matter (mass) times velocity squared whether you can see it or not. In the CRC handbook you have the Calorie defined in terms of their favorite energy unit the Joule as being 4.1868 joules. And the joule is 10 million ergs. So if you had a balloon with some water and you put heat in it and expanded it and if you were outside it and didn't have the buoyancy of the air and couldn't see its size change you wouldn't note it to be any different with all that additional heat energy. But since our concept of temperature is related to the heat energy mass times velocity squared/2 values, we soon get into astronomical temperature values when we get into the presumed velocities of the Big Bang theory. And at that level their value isn't telling us much of anything.WFPM (talk) 17:41, 28 March 2013 (UTC)

Needs Revision. Contains a fundamental blunder.

The following sentence is wrong: " Heat ... is synonymous with heat flow and heat transfer." Heat is not synonymous with heat transfer. That statement is risible. I also commented on the talk page of the Heat Capacity article. "Freeman Dyson in [Scientific American 1954] writes: Heat is disordered energy." ← this is from my 1966 Physics textbook (Halliday & Resnick Pts I & II pg 640). Heat transfer is a process, heat is a type of energy. If someone wants to make an argument that the process is the thing, then they should do so explicitly, but NOT in the introduction. The logical problem I see in making this claim, is that multiple different processes in an isolated system can lead to identical heat energy transferred (but not identical final state, obviously). The process is not the (abstract) thing.173.189.78.236 (talk) 01:46, 18 May 2013 (UTC)

Heat is not a type of energy, it is a type of energy transfer. Heat(ing) is responsible for a change in the internal energy, it is a process by which the internal energy is increased. Similarly, work is not a type of energy but rather a type of energy transfer, a process by which the internal energy is increased. For a given internal energy, there is no way to divide it up into heat energy and non-heat energy, or work and non-work energy. The logical problem you pose is unclear. Can you give a concrete example? PAR (talk) 02:09, 18 May 2013 (UTC)
On the physics here, I agree with Editor PAR against Editor 173.189.78.236. In thermodynamics in its strict sense of language, "Heat is not a type of energy, it is a type of energy transfer"; the above comment of Editor 173.189.78.236 does not recognize this. The comment of Editor 173.189.78.236, that "The process is not the (abstract) thing", is logically muddled; it seems to make the mistaken assumption that 'heat' in thermodynamics is an enduring physical object; it is not, it is only a label for a kind of process. The quote from Freeman Dyson is couched in loose rhetorical language, and should not be read as strictly logical.
Nevertheless, in relation to the use of language, Editor 173.189.78.236 makes a reasonable point about in the sentence that he quotes from the Wikipedia article. The sentence that he quotes is worded so as to be open to being misread, because it does not make it clear enough that it refers narrowly to a very specific language usage, that of thermodynamics in its strict sense.Chjoaygame (talk) 22:48, 18 May 2013 (UTC)

The observation by editor 173.189.78.236 that Heat is not synonymous with heat transfer is entirely correct, heat is measured in joules (J), heat transfer in joules per second (J/s). Only the truly ignorant could possibly see these as somehow "equivalent". I propose that the statement (and its consequences in the article) be deleted.

Similarly I am replacing my contribution, removed here by User Cburnett. My contribution drew attention to the fact that it is only the energy that is equivalent in thermodynamic systems; bundling kinetic and potential energy in the same category, which is what the " = " does, is a mathemamatical simplification of physics much too far, clearly leading tho the kind of confusion noted by editor 173.189.78.236. --Damorbel (talk) 06:20, 27 May 2013 (UTC)

Further to the statement:-

Heat is not a type of energy, it is a type of energy transfer by editor PAR.

If heat is "not a type of energy", then just what is it?

Saying that it is "not a type of energy" cuts out most of physical existance (E = mc2) which is either a remarkable scientific breakthrough or plain absurd.

Such statements have no place whatsoever in Wikipedia. --Damorbel (talk) 07:07, 27 May 2013 (UTC)

I have reversed an edit made by PAR in connection with this discussion. PAR explained his removal of my edit with the comment "heat is not a quantity, it is a process." This is a good example of the fundamental errors in the article - heat transfer is indeed a process, a very important engineering process but, as with many engineering terms, it is a handy short form for "transfer of heat energy". It would seem that this (lack of) distinction infects the whole article. --Damorbel (talk) 06:37, 28 May 2013 (UTC)
PAR is correct. Heat, like commercial electricity, can be discussed in either units of energy or power. But also like commercial electricity, heat is assumed to always flow. Unlike static electricity there is no static heat, and in any case, since there is certainly no static commercial electricity, it would be silly to imagine that the electric power company sells you a flow of commercial static electricity. Just because you get charged for electrical energy in joules (kw*hr) does not imply that the electrical energy ever arrived as anything else other than an energy FLOW. Heat is the the same. It is a type of energy that we always see in flow, and never rest. However, just as with commercial electricity, heat can be integrated and discussed in energy units. SBHarris 17:09, 28 May 2013 (UTC)
Sbharris, I would like to understand you more clearly. When you write:-
Heat, like commercial electricity, can be discussed in either units of energy or power.
Do you mean by this that the article should not distinguish between energy (joules) and power (watts, kWh, etc.)?
This is the distinction I am making and I do think any disagreement should be resolved quickly. --Damorbel (talk) 17:34, 28 May 2013 (UTC)

This article cannot make a big point of distinguishing kw from kw hrs. Commercial electrity is discussed in both terms and so is heat. But we cannot push the analogy too far because while charge is conserved, heat is not. Thus , the total heat absorbed by an object need not be its heat content. The very idea of heat content, due to nonconservation, is a bad idea. As well speak of an object's work content as its heat content. "Thermal energy content" sounds better but is no more legitimate. "Thermal energy flow" is as silly as static electricy flow. There is no static thermal energy. And we already have a name for thermal energy flow: it's called "heat." SBHarris 18:05, 28 May 2013 (UTC)

Another analogy - if you have a pond of water being fed by two streams, the "heat" stream and the "work" stream, the amount of water in the pond is not and cannot be divided up into "heat stream water" and "work stream water". Water is water. There is water added by the "heat stream" and there is water added by the "work stream", but once it's in the pond, it's just water. The amount of water in the pond is analogous to the internal energy. There is no heat energy, there is no work energy, there is only internal energy, and it is changed by the heat process or by the work process. PAR (talk) 07:45, 29 May 2013 (UTC)
Sorry, mass flow ("stream of water") is an invalid argument for either heat or work, neither of which are conserved as is energy.
The problem with the article is that it doesn't distinguish between heat energy (joules) and heat transfer (watts = joules/sec.), until it does it remains rubbish. --Damorbel (talk) 08:46, 29 May 2013 (UTC)
Joules / sec would be rate of energy transfer. That's not what we're talking about here. We're talking about the integral of that over time to give a total amount of energy transferred. Which would be measured in Joules. Or kilowatt-hours, just like your electricity meter does.
Of course, just because so many joules of electricity have come into your home, that doesn't mean that you can now say that your house now contains that many more joules of electrical energy. Because that wouldn't be meaningful. Similarly, in thermodynamics, heat is a measure of an amount of energy that has been transferred -- but not (at least, not in current usage) any identifiable aspect of the current state of the system itself. Jheald (talk) 09:59, 29 May 2013 (UTC)

Latest change to the article

Jheald has reversed my edit with the comment "WP has to reflect the position of the scientific community."

Since the article currently has:-

Heat is not a property of a system or body, but instead is always associated with a process of some kind, and is synonymous with heat flow and heat transfer.

- which is not compatible with the fact that the energy content of matter is directly proportional to its absolute temperature, i.e. its heat; whereas Heat transfer is proportional to temperature difference, not to absolute temperature. These are quite different matters and a Wiki article should make this quite clear. --Damorbel (talk) 05:38, 29 May 2013 (UTC)

As I wrote in my edit summary: WP has to reflect the position of the scientific community, not the personal theses of Damorbel.
I don't see any point in getting into prolonged further discussion with you about this. People have tried in the past, and it makes as much impression as talking to a brick wall. As Arbcom have reminded us in the past, talk pages are for improving articles, not for trying to straighten out your anyone's misunderstandings about physics.
So I'm not going to get into a discussion with you about this, and in future I shall just revert any more of this WP:OR from you on sight. Jheald (talk) 10:06, 29 May 2013 (UTC)
I don't see any point... Jheald, this is not relevant. The matter in hand is the distinction between heat (energy) and heat transfer, the distinction to be made is between joules and joules per second; currently the article doesn't do this and it should. If you do not agree then I invite you to explain why. --Damorbel (talk) 17:04, 29 May 2013 (UTC)
It is not really true that "the energy content of matter is directly proportional to its absolute temperature". Consider that not everything is an ideal gas (actually nothing is exactly an ideal gas), that the heat capacity of most substances varies with temperature, and that things can have (non-thermal) energy when they are at a temperature of absolute zero. Cardamon (talk) 17:11, 29 May 2013 (UTC)

By directly proportional I do not mean linearly proportional.

things can have (non-thermal) energy when they are at a temperature of absolute zero

True enough. But at 0K the heat is still zero joules. --Damorbel (talk) 18:03, 29 May 2013 (UTC)

Most books that I've seen say that "y is directly proportional to x" means that y = kx, with k being a constant. And most recent textbooks (I just checked three) seem to describe heat as energy transferred from one body to another. (Although I suspect that in the past heat was sometimes used in the sense of "thermal energy".) So I agree with Jheald's reversion. Cardamon (talk) 08:29, 30 May 2013 (UTC)
If I understand you correctly you are saying that Heat as energy (i.e. joules) is to be described as Heat transfer (i.e. joules per second or watts)
The point I am making is that joules and joules per second (watts) are not, cannot be, the same thing.
You may indeed have a textbook that says this; my point is that such a statement cannot be correct. I am interested in your view. --Damorbel (talk) 17:59, 30 May 2013 (UTC)
Further to the matter of proportionality. In thermal matters the heat energy is that energy contained in the degrees of freedom of the system particles and this is linearly related to temperature by the Boltzmann constant. The reason why heat capacity of many materials is not constant is that, in many cases, the all possible degrees of freedom are not accessible because large potential energy barriers exist that arise from various interatomic forces; these potential energy barriers first need to be overcome before they can be accessed by the system energy. A simple example - ice has to be melted before H2O can boil! --Damorbel (talk) 18:15, 30 May 2013 (UTC)


Yes, I agree that heat can be measured in Joules. No, I am not saying that heat is a rate of transfer of energy. I am saying that heat is an amount of energy (and an amount that can be measured in Joules) which is transferred from one object to another.

Here are some definitions from textbooks:

1) " Thermodynamics", by Herbert Callen, copyright 1960, first edition, no ISBN number. This gives a preliminary definition of heat on page 7 and a quantitative definition starting on page 17. The preliminary definition is: " ...But it is equally possible to transfer energy to the hidden atomic modes of motion as well as to those which happen to be macroscopically observable. A transfer to the hidden atomic modes is called heat."

The quantitative definition is: "The fact that the energy difference of any two states is measureable provides us directly with a quantitative definition of heat. To wit, the heat flux to a system in any process (at constant mole numbers) is simply the difference in internal energy between the final and initial states, diminished by the work done in the process."

2) From "Statistical physics", by copyright 1967, ISBN 07-004862-2, by Frederick Reif, page 35: "It is, however, quite possible that two macroscopic systems can interact under circumstances where no macroscopic work is done. This kind of interaction, which we call thermal interaction, occurs because energy can be transferred from one system to the other system on an atomic scale. The energy thus transferred is called heat. "

3) From "Statistical Mechanics", by Kerson Huang, copyright 1963, ISBN0 471 41760 2, pages 4, "(i) Heat is what is absorbed by a homogeneous system if its temperature increases while no work is done. …"

Note that all of these sources treat heat as an amount of energy ‘’transferred’’ from one system to another. Introductory physics books (and I could quote some if necessary) also treat heat as an amount of energy transferred from one system to another.

I suggest that the article follow this terminology. Cardamon (talk) 19:31, 30 May 2013 (UTC)

Cardamon, the (current) opening statement of the article is:-

heat is energy transferred from one body to another by thermal interactions...
..Heat is not a property of a system or body, but instead is always associated with a process of some kind, and is synonymous with heat flow and heat transfer.

This is incorrect in all respects, e.g. heat is the property of a body that gives rise to chemical change.

Also you write:-

heat is an amount of energy (and an amount that can be measured in Joules) which is transferred from one object to another without saying how this happens.

Please say:-

1/ Do you need a heat transfer causing temperature difference, to have "hotness"?

2/ Does a system at T > 0K in thermal equilibrium, thus without any heat transfer, contain any "heat"? --Damorbel (talk) 05:47, 31 May 2013 (UTC)

Latest reversal

This reversal here explains:-

No, heat transfers potential energy also. When ice melts, kinetic energy and ten do not change. But heat flows.

I do not think there is a consensus anywhere for heat flowing, this should have died in the 19th century. It is completely destroyed by the conservation of energy. I suggest that explanations relying on "heat flowing" be confined to historical articles about caloric. Caloric flowed, but heat doesn't. Let's get rid of this non-scientific idea! (I consider this discussion sufficient to eliminate the (linked) edit unless, of course, a good defense of caloric appears! --Damorbel (talk) 15:46, 17 July 2013 (UTC)

  • I don't care if you want to say "heat flows" or "heat transfers energy." Whatever. So long as you don't say "heat transfers kinetic energy." Heat transfers many kinds of energy. When ice melts at the same temperature as the water it melts in, kinetic energy is not being transferred. Rather, mean kinetic energy is the same in the ice as in the water, as they are the same temperature. If energy flows from one to the other, it is not kinetic energy, or at least no purely kinetic. The difference between ice and water at the same temperature, is that ice has more potential energy, having overcome the energy of binding of water molecules into the crystal. That energy is transferred into the crystal as heat when the ice melts. But that heat energy cannot be said to be really kinetic or potential energy. It's a mixture of of both and this depends on scale. All that can really be said about this energy is that it is composed of both kinds of energy microscopically. A molecule's kinetic energy can be absorbed into another molecule's potential energy, and vice versa. I reverted the phrase because you had inserted the word "kinetic" and that is wrong. It is not just a kinetic process. 22:29, 17 July 2013 (UTC)(Unsigned edit by SBHarris.)

SBHarris you write

I don't care if you want to say "heat flows" or "heat transfers energy."

If heat flows it is conserved. But, for example, in the carnot cycle heat neither 'flows' nor is conserved, the output heat, at a lower temperature, is always less than the input heat. The work done by a (perfect) Carnot machine is equal to the difference between the input heat and the output heat, since the work done by the carnot machine has an mechanical energy equivalent to the heat difference, energy is conserved.

Similarly with 'ice melting'. When ice melts there is no change of the kinetic energy in the ice because there is no change of temperature. The energy of the H2O must increase to melt the ice but that is to break the crystal bonds of the ice. This energy of fusion can come from any source, chemical energy, mechanical work, there is no requirement for it to come from the kinetic energy of other particles i.e. heat. --Damorbel (talk) 06:17, 18 July 2013 (UTC)

Editor Harris, you write:-

The difference between ice and water at the same temperature, is that ice has more potential energy, having overcome the energy of binding of water molecules into the crystal.

I suggest that it is water that has more potential energy than ice, this is the so-called latent heat given up as it freezes.

And again you write:-

That energy is transferred into the crystal as heat when the ice melts.

How can it "transfer... into the crystal"? Surely the crystal ceases to exist when it melts? It the fusion energy (latent heat of fusion) transferred to the the water molecules that puts them in the liquid state.

You have written nothing that supports deleting my edit; please explain why the deletion should stand. --Damorbel (talk) 07:15, 18 July 2013 (UTC)

Heat not a state variable, not an extensive variable of state, not a conserved quantity, but still subject to a transfer balance condition

Here This edit makes an already poor article worse, How is it possible to claim that:

Even though heat is not a conserved quantity, the term 'heat flow' is often used.

That means that the law of conservation of energy is being explicitly ignored. Gentlemen please!

The article contains massive deficiencies e.g. why no mention the fact that heat energy is zero at 0K?

The article has other very serious deficiencies, throughout the whole article it constantly confuses heat with heat transfer (calling the latter "heat flow"!), at the very least it should specify the difference. --Damorbel (talk) 07:48, 18 July 2013 (UTC)

It is simply a fact that may be checked by reading current reliable sources, that the term 'heat flow' is often used in reliable sources. It is not up to Wikipedia editors, gentlemanly though they may claim to be, to impose their own private views over what is found in reliable sources.Chjoaygame (talk) 09:07, 18 July 2013 (UTC)

Um, Chjoaygame, (I suppose it is your contribution above) the conservation of energy and the non consevation of heat is not a private view. If you wish to promote the caloric theory, please do it in that article. Even the wiki article on the conservation of energy explains the origins how and why heat is not a conserved quantity, this is so important it should be prominent in the Wiki article on heat.

An article on a scientific matter needs to be clear, the fact that many authors do not understand that 'heat flow' is a dead concept is every reason why the error should be identified, it is absolutely equivalent to the old flat earth concept, mention it but please don't ever cite it as a valid scientific idea. --Damorbel (talk) 09:34, 18 July 2013 (UTC)

Dear Damorbel, you ask for it to be noted in the article at the relevant point that heat is not conserved quantity. If you read the article you will find that it had already been so noted when you complained about it. No rational reader would read into that an attempt to deny the law of conservation of energy. The term 'heat flow' is often used by reliable sources; that is a peculiarity of customary language, but still a fact of usage, as may be easily verified by reading reliable sources. No rational reader would read into that an attempt to deny the law of conservation of energy. To make you happy, I have added explicitly that this is a peculiarity of customary language.Chjoaygame (talk) 10:02, 18 July 2013 (UTC)

Lead

Damorbel has made two significant edits, one an undoing, the other an overwriting of the lead.

The undo is claimed by Damorbel to be justified by "unavailability" of one of the cited reliable sources, but which one is not stated by Damorbel. All the cited sources are standard texts available in libraries. Damorbel's claim of "inaccessibility" is not accurate, and in any case would be an inadequate reason to delete the whole new section.

The overwrite is an attempt by Damorbel to impose his private views against the accepted orthodoxy of current reliable sources, yet another of his repeated attempts of this kind. Moreover Damorbel's overwrite contains errors of physics which have been pointed out to Damorbel elsewhere, including just above by SBHarris, and it would be redundant for me to repeat those criticisms of his private views again here. Damorbel needs to take heed of those criticisms, not ignore them as his overwrite attempts to do. Damorbel's attempt to re-write the lead is not acceptable.Chjoaygame (talk) 09:06, 18 July 2013 (UTC)

Please give reasons why the previous version of the article reported the consevation of energy and the non-coservation of heat correctly and why this was not a serious defect needing correction. --Damorbel (talk) 09:42, 18 July 2013 (UTC)
Your request for reasons is unfulfillable because it is based on a mistaken premise. Contrary to the mistaken premise of your request, the article did make the appropriate note that heat is not a conserved quantity; and no reasonable reader would have taken it to deny the law of conservation of energy. Nevertheless, as noted above, however, just to make you happy, I have added to the article an explicit note that we are dealing with a peculiarity of customary language.Chjoaygame (talk) 10:07, 18 July 2013 (UTC)

Your request for reasons is unfulfillable because it is based on a mistaken premise And what "mistaken premise" please? You do not identify any "mistaken premise", How am I supposed to respond?

The mistaken premise is specified in the sentence following the one you quote from me. Your mistaken premise was that the article failed to note that heat is not a conserved quantity. The article did note just that: "Even though heat is not a conserved quantity, the term 'heat flow' is often used." You ask "How am I supposed to respond?" You always have the option of reading the edits you complain about before complaining about them, and then you wouldn't be called upon to respond.Chjoaygame (talk) 13:40, 18 July 2013 (UTC)
'heat flow' is a concept belonging to the caloric theory of heat which is obsolescent because it did not take into account the conservation of energy, the term has no place in an article on Heat. --Damorbel (talk) 14:19, 18 July 2013 (UTC)

As I have pointed out before, the article makes no distinction between heat as a form of energy (joules) and heat transfer which is joules per second (watts). This is not "a peculiarity of customary language", it equally deficient with failing to distinguish between distance (metres) and speed (metres per second) and I see nothing in the article or the talk that deals with this fundamental objection to how the article is written, the article is grossly in error. --Damorbel (talk) 11:28, 18 July 2013 (UTC)

You are here raising another complaint, moving the goal posts while the ball is in midflight. Your just previous complaint was that it was invalid to speak of flow of a non-conserved quantity; the valid response to that, a response that you wish to deny, is that in the current literature in fact it is a peculiarity of customary language to speak of 'flow of heat', and the article reports that. You think that peculiarity wrong, and perhaps you may be right, but the Wikipedia does not try to dictate how language ought rightly to be used in the literature, no, the Wikipedia just reports how it is actually used there.
But now, as to your moved goal posts: You now complain, yet again, as you have endlessly done here before, that you think that heat should be read as a form of energy measured in Joule, and that heat transfer should be measured as a time rate measured in Watt. The answer to this has been repeatedly explained to you in these pages, and it would be redundant of me to try again to tell it to you yet again. You say that there is nothing in the article that deals with what you call "this fundamental problem". The "problem" is only in the language-processing recesses of your mind, and even if it were not redundant for me to try to do so, my skills at exposition are far from adequate to dislodge it from there.Chjoaygame (talk) 13:40, 18 July 2013 (UTC)
Joules and watts? No, not moving the goal posts, just another of the many defects in this article. Heat is measured in joules, heat transfer in watts, like distance and speed, very different concepts.--Damorbel (talk) 14:19, 18 July 2013 (UTC)
It doesn't matter of heat is conserved if you're talking about heat transfer across a 2-D surface. Heat energy in that case is "conserved" in the sense of not disappearing in fluxes across surfaces. Any flow into such a surface is the same as the flow out of the surface, with no caloric implied. In the same way, electricity is not conserved either, yet 3.6 MJ (1 kw-hr) of it going from the outside wiring into my house, is 3.6 MJ that winds up coming INTO my house. There is no loss or gain of energy there-- the energy that comes in from outside is the energy that winds up inside. Heat is the same. We can speak of electricity in MJ or in KW (as an energy or a power) and these are merely ways of talking about electricity as (either) a differential or an integral WRT time. In either case it's electricity and it's understand that electricity is always energy-in-motion, and that even when we speak of electricity as an energy, it was (and always will be) delivered at an energy-rate (a power), since electricity (as delivered from the electric company) never sits still. Nor does heat (perhaps there are ways that electricity can be though to sit still, but there aren't for heat). Thus, heat IS heat-transfer, just as electricity IS electricity-transfer. An amount of heat represents an integral of heat transfer over time, but not an amount of heat sitting somewhere, static. Okay?

It's silly to insist that heat be a kinetic thing when there are plenty of ways to transfer heat that aren't kinetic. Heat transferred as radiation isn't kinetic, and that's reason enough right here not to generalize. But also there are latent heat transfers from mechanisms like steam condensation, that transfer large amounts of heat in turbine systems, and that heat energy is stored as latent heat of vaporization, not kinetic energy of molecules. Clear? SBHarris 01:25, 19 July 2013 (UTC)

SbHarris, you write:-
It doesn't matter of heat is conserved if you're talking about heat transfer across a 2-D surface. Heat energy in that case is "conserved" in the sense of not disappearing in fluxes across surfaces. Any flow into such a surface is the same as the flow out of the surface, with no caloric implied.
Imagine the Heat (with whatever definition) is presented to the surface of a cube of ice, if the heat source is >0oC then the ice will melt without, at first, any change in temperature. What is conserved, if anything, the heat or the energy? --Damorbel (talk) 09:47, 19 July 2013 (UTC)

Why, both. The heat that leaves the water is the heat that enters the ice. Joules and watts of one is joules and watts of the other. To make or destroy heat you need a 3-D control VOLUME. A surface will never do. Just like electricity, where the analogy is close. Hope that's helpful, SBHarris 10:57, 19 July 2013 (UTC)

But to melt the ice TH as I mentioned, must be >TICE. Let us say the heat comes from 80gm water @ 10oC after a time this will have melted 10gm ice and everything is now at 0oC, and nothing is at 10oC any more, so the energy stays the same but the heat has disappeared! --Damorbel (talk) 12:05, 19 July 2013 (UTC)
Yes, so what? Heat is not conserved and can disappear into a control volume. That is why it is unwise to even use the phrase "thermal energy" except as a synonym for heat-flow = heat. Thermal energy can cross a surface into a volume, but cannot THEN be said to reside in said volume. All conservation laws of heat end after it crosses the surface, and become only conservation laws of internal energy. However, heat flow through a control surface represents energy in motion, and is conserved the way any type of energy is conserved. In this case, a certain amount of heat flows into the ice to melt it. This is heat that flows through the imaginary surface at the boundary of the ice. It comes from the water, which is cooled by its loss. The heat that flows into the ice is the same number of joules of heat that comes from the water. That is a surface boundary problem.

After that, however, all bets are off. The energy that crosses this surface is heat while it is in the act of crossing, but it is not (necessarily) entirely heat before, and it is not (necessarily) 100% heat after it has crossed. Heat is "conserved" while it crosses the surface inasmuch as the heat energy that leaves one volume is the same as the energy that enters the other. But after that, only the energy is conserved, as some of the heat can (and probably does) change forms to some sort of other energy that is non-thermal. Its "thermal-ness" (its nature) is not conserved when talking about the volumes it come from and goes to. Only when talking about the surface is the heat that leaves the water the same as the heat that enters the ice. After it has crossed, it is internal energy, but no longer need be heat (it CAN be heat in conduction, but there is no guarantee). And after it is past the surface it need not be any longer thermal energy, which is why we deprecate the term except at the 2-D boundary, through which heat flows. SBHarris 01:29, 20 July 2013 (UTC)

Please, use this: °C for degrees. I detest to see rubbish like <sup>o</sup>C and randomly chosen round symbols instead of °. Incnis Mrsi (talk) 15:38, 19 July 2013 (UTC)

Damorbel, could you specify a WP:reliable source that backs your claim about this proportionality (mathematics)? Incnis Mrsi (talk) 14:48, 19 July 2013 (UTC)

J C Maxwell 'Theory of Heat' p64 :-
If we assume, what is nearly though not exactly true, that the quantity of heat required to heat the lead [metal] is the same for each degree of rise of temperature... --Damorbel (talk) 15:16, 19 July 2013 (UTC)
Nearly though not exactly true. So… ? Incnis Mrsi (talk) 15:38, 19 July 2013 (UTC)
not exactly true - because the specific heat of materials is not exactly constant with temperature. The specific heat article explains why :-
For quantum mechanical reasons, at any given temperature, some of these degrees of freedom may be unavailable, or only partially available, to store thermal energy. In such cases, the specific heat capacity is a fraction of the maximum.
For the meaning of degrees of freedom you should check the WP article. --Damorbel (talk) 06:32, 23 July 2013 (UTC)

Errors

I tire of correcting Damorbel's faulty edits. I trust someone else may find time to do it on his latest]. Part of the trouble is that responding to his errors only encourages him to make more of them.Chjoaygame (talk) 13:49, 18 July 2013 (UTC)

I would like to have all details of these errors, please.

Your remark :-

Part of the trouble is that responding to his errors only encourages him to make more of them.

Must be seen as a personal comment. Please refrain, your opinions about me are of no relevance in Wikipedia. --Damorbel (talk) 14:03, 18 July 2013 (UTC)


Damorbel, I will try not to make any personal comments here. If you don't stop re-inserting your views against the consensus here, we're going to have to ask admins to take action against you to prevent this. You keep re-inserting your incorrect statements about heat being kinetic energy, etc. It's good that you're interested in this subject but you should take thermodynamics course or read textbk if you want to find out how the scientific community defines these terms rather than how you are defining them. Or, please try reading the Heat article in another language as linked on the left side, using Google Translate to read it in English. Otherwise, there are other venues where you can write essays about why these terms should be (re)defined in the way you describe, but not in an encyclopedia, please. In case it helps you at all, let me point out that thermal energy is stored in part in the oscillations of molecules and atoms, and oscillations involve a continual transformation between kinetic energy (reaching a max when the particle is moving fastests) and potential energy (when the particle is at its most extreme displacement). Look up oscillations of springs for this concept. Thermal energy is a term used to describe a property of a system or body, while the term heat is defined as only a property of a specific process that transfers a given amount of energy in certain ways (which represents a change in energy of one system and opposite change in another). Also, Joules/second simply aren't units of energy (nor of heat), they're units of power (pls. look it up), which is energy per unit time. DavRosen (talk) 14:23, 18 July 2013 (UTC)

10:27, 18 July 2013‎ Damorbel (talk | contribs)‎ . . (55,110 bytes) (-201)‎ . . (Undid revision 564791172 by DavRosen (talk)DavRosen writes:- " Pls. take course or read textbk)" Personal attack!) updated since my last visit (undo | thank)

Damorbel, I meant it as a constructive suggestion for finding out the accepted definitions of some of these terms, but I can see how you could view it as a personal attack, and I apologize for that. That does not give you the right to continue your edit war: you have re-inserted your views on heat being kinetic energy, among others, many times, and they have been corrected by several different editors. The consensus here is clearly that your views are your own, and not encyclopedic descriptions of mainstream scientific usage. You can't keep putting your own views in -- you have to first obtain/change the consensus here on the Talk page. I, myself, am not going to undo your undo of my undo of your views because I don't want to be seen as edit-warring. I have only done that single edit (undo) of this article on this dispute. Maybe I'll just tag. DavRosen (talk) 14:47, 18 July 2013 (UTC)

Damorbel, maybe it would help if you consider a solid rather than a gas. How can the thermal energy of a solid object (such as a piece of wood) be entirely kinetic when its molecules don't travel around? It has thermal degrees of freedom such as oscillation/vibration of those molecules, but the force keeping the molecules from traveling far is related the potential energy [gradient]. DavRosen (talk) 14:59, 18 July 2013 (UTC)

DavRosen, I don't believe Damorbel is claiming that the thermal energy of an object is entirely kinetic. He is saying (I think) that the transfer of energy we call "heat" involves only kinetic energy. For example, supercooled water at -2°C has more potential energy than does ice at -1°C, but less kinetic energy. So, put in thermal contact, heat would flow from the ice to the water. Spiel496 (talk) 16:26, 18 July 2013 (UTC)
There was an edit conflict a while ago And I will add my material after this. --Damorbel (talk) 20:36, 18 July 2013 (UTC)

DavRosen, you write:-

that thermal energy is stored in part in the oscillations of molecules and atoms, and oscillations involve a continual transformation between kinetic energy (reaching a max when the particle is moving fastests) and potential energy (when the particle is at its most extreme displacement).

You are correct. But these vibrations are called 'degrees of freedom' where the potential and kinetic energy alternate, on average they are the same and each has a peak equal to twice its average, so the peak (of either kinetic or potential energy) is equal to the total energy content.

The concept of thermal energy does not involve any particular measure of temperature; two system have different thermal energies, but the same temperature - result no heat transfer. But if they have different temperatures but the same themal energy then there will be energy transfer (from the hotter to the colder.)

Finally. You write:-

Joules/second simply aren't units of energy

That is what I meant when I insisted that heat transfer is measured in Watts (Joules per second) and heat (by itself) in Joules. --Damorbel (talk) 20:42, 18 July 2013 (UTC)

DavRosen, I wonder if you get what I am saying about the 'potential energy' in an oscillating system. I had the same problem with this my self, it is not well explained and probably not very well by me. I think Spiel496 was pointing this out in his note above. Whatever the case I would like to be sure it is understood.

Sorry if I was a bit sensitive about personal remarks but they are very much against Wiki policies. --Damorbel (talk) 20:50, 18 July 2013 (UTC)

If you understand that the oscillations can alternate between potential and kinetic energy, then why do you insist on using only the term kinetic energy, and removing the term potential energy in connection with heat and temperature everywhere you see it mentioned? You say "Heat in physics is defined as the kinetic energy the particles of body.", "When two closed systems come into thermal contact, they exchange the kinetic energy of their particles. The result is a spontaneous net transfer of kinetic energy, ", , "Heat in a body is stored as the kinetic energy of the particles, changes in heat energy in a body result in temperature change. ", Heat is the kinetic energy of particles, atoms, molecules etc. and their underlying microscopic degrees of freedom." Etc. DavRosen (talk) 21:13, 18 July 2013 (UTC)
You write:-
why do you insist on using only the term kinetic energy
In a resonating system (degree of freedom) the total energy, when oscillating between kinetic and potential, is constant; the peak energy can be either kinetic or potential - in each case the peak is equal to the total energy. Since it is only the kinetic part that communicates energy to adjacent particle (corresponding to a collision in gas theory). The use of the term kinetic energy for particles in solids is justified precisely because the peak (kinetic energy) is equal to (average) total energy. --Damorbel (talk) 06:58, 19 July 2013 (UTC)
I'm not so sure the transfer mechanism is always kinetic per se: the particles may be coupled at the boundary by their electrostatic force on one another as they get close, in which case the transfer is partially as electrostatic potential energy during part of the transfer. But, more importantly, the principles of the thermodynamics hold regardless of the specific microscopic mechanism by which thermal contact and transmission occur, so nothing is gained by specifying that it must always be kinetic. Even if in practice with ordinary matter in solid/liquid/gas phpases the transfer were of a specific microscopic nature, thermodynamics could just as well be applied to other, more exotic types of systems where this might not be the case, such as might perhaps arise under the extreme conditions of a black hole or with exotic particles (not just atoms); this is speculation but the laws of thermodynamics don't depend on such microscopic details.
We are probably on the same wavelength. You write " the particles may be coupled at the boundary by their electrostatic force on one another " But I prefer electromagnetic forces. Photons do the job for EM radiation and they transfer momentum in rather the same way as a collisions do in gases, the main difference is that emission of photons leaves behind a recoil reaction that conserves linear momentum, this was postulated by Einstein in a 1917 paper "On the Quantum Theory of Radiation", it is a 'good read'. --Damorbel (talk) 15:04, 19 July 2013 (UTC)
In any case, the sending system's average microscopic potential energy does decrease and the receiving system's avg PE does decrease by some amount, at least if some vibrational dofs exist. In the case of only vibrational DOFs, half the transferred energy shows up as a change in avg potential energy and half as a change in avg kinetic energy. This is because each particle reaches its peak at an independent time so overall half the thermal energy is kinetic and half is potential microscopically at any given time for a typical vibrational dof. But again the specific form of energy or types of DOF at the microscopic level don't affect the thermodynamic behavior of the system at a macroscopic level, which is why we simply call it thermal energy rather than focusing on exactly what form the energy takes in a particular system at a particular time at a microscopic level. Thermal energy, no matter what you want to call it and what forms it may take microscopically, goes to zero in lockstep with the abs. temp., all else being equal/unchanging. DavRosen (talk) 14:48, 19 July 2013 (UTC)
Also, when you examine a given system at a given time, without knowing what it's state was in the past, there is no way to tell, in general, exactly how much of its internal thermal energy it aquired through a heat transfer process (say, thermal contact with a hotter body), and how much it acquired through work being performed on it by application of a force. For example, a gas system at P,V,T could have originally been in any of a number of states, and thus gotten to the present state via different amounts of work and heat processes. You can't say it "has" a certain amount of heat and a certain amount of work, because it's impossible to tell which combination got it there. Similary, you could start at its present state and get it to nearly 0 degrees K entirely via thermal contact with something even closer to 0 K, or you could get part of the way there by letting it do work on something in its surroundings and then do the rest thermally. So how do you know "how much heat" it had in it, unless you always count both the heat and the work? The property of the system that goes to zero at 0 K is its thermal energy, not "its heat". By saying thermal energy, we're agnostic about how much work (vs heat) might have been involved in adding or removing the thermal energy. DavRosen (talk) 21:46, 18 July 2013 (UTC)

Thermodynamics part 1 according to Damorbel

Damorbel:

  • There appears to be a problem here with the difference between 'Heat' and 'Thermal energy', they are closely related but for practical applications they should not be confused.
Heat is the energy content of material due to its temperature. For a mole of material it is energy (J) due to the specific heat times its temperature -
J = Cp x T

COMMENT: Now hold your horses. The above equation presumes Cp (heat capacity, constant pressure) is some kind of constant which doesn't change with temperature. How else could you multiply by twice the T and get twice the J? You can't. Cp(T) is a function of temperatue. If you want to know how much heat it takes to reach a certain temperature, this is an integration:

Q = ∫ Cp(T) dT

Where the limits of integration are from 0 K to your temperature T. And since the function Cp(T) changes in odd and tricky ways (including going to zero near absolute zero), the Q you get is impossible to simply calculate. C(T) has to be measured at each T. Worst of all, C is a function of constant volume or constant pressure. If you use C at constant pressure, your system will do PV work as it heats, and some heat will be transformed to work. It will therefore take more Q to reach a given T. It is also for this reason that we cannot speak of a certain Q "residing" in an object that has been warmed. We don't know how much work the object did on its suroundings by expansion, while warming. There are many says to get to the same volume and the same temperature for the same object, and each way absorbs a different amount of heat energy. Thus, there is no such thing as the "amount" of thermal energy "in" an object. SBHarris 06:19, 24 July 2013 (UTC)

Damorbel:

So heat is energy measured in Joules per mole x K = J/mol x K
Thermal energy is also measured in Joules and it is also due to the kinetic energy in the material. But it is measured in Joules only.
Thermal energy differs from heat in that
1/ it is neither proportional to temperature e.g. 1mol at T1 contains the same (thermal) energy (J) as 2mol at T1/2 (absolute temp.!)
2/ nor is it proportional to the amount of material e.g. 1mol at T1 contains the same (thermal) energy (J) as 1/2mol at 2T1 (abs. temp.)
So to summarise:-
Heat is measured in joules/mol
and:-
Thermal energy is measured in joules--Damorbel (talk) 07:48, 23 July 2013 (UTC)

COMMENT: Needless to say, the above is all nonsense. Pay no attention to it. The idea that 2 moles of anything at half the temp T contains the same "thermal energy" as one mole at temp T, also assumes that heat capacity is some kind of constant. It isn't. SBHarris 06:24, 24 July 2013 (UTC)

What reliable source do you have for that unique definition of heat that not only is contrary to established usage but changes its dimensionality? Robert McClenon (talk) 11:44, 23 July 2013 (UTC)
In thermodynamics, heat is a transfer, not a state of a system, and in measured in Joules. Changing the dimensionality of a quantity should not be done lightly. Robert McClenon (talk) 11:44, 23 July 2013 (UTC)
If this distinction is not preserved sensible discussion becomes very difficult and thermal physics becomes nonsense!

--Damorbel (talk) 07:48, 23 July 2013 (UTC)

Thermodynamics part 2 according to Damorbel

Robert McClenon, the kinetic energy in a mole of material is the sum of the energy in the degrees of freedom of the particles in the system, there are N = particles (N is Avogadro's constant) in a mole so the energy in a mole is E = kNT where k is the Boltzmann constant (The Boltzmann constant is the energy of one particle per unit temperature.)

This is much the same as the gas equation:-

 . . . . . . .(1)

where PV is the volumetric energy of the system.

Needless to say for solids and liquids PV is simply replaced by the

thermal energy E (joules) in the solid, and the above equation becomes:-

 . . . . . . . . .(2)


Sbharris comment: Hold Horses The phrase "Needless to say" above, means you've just been fed much B.S. The equation PV = NkT holds for an ideal gas, and there the truth stops. Here the pressure is the pressure you get if N moles of the gas is held in a volume V. But what if you put N moles of a liquid or solid, into the same volume? Would it have the same pressure? No, it might not have any pressure. The PV means nothing for a solid or liquid, because we don't know what P is, and it might be zero. So this Damorbel proposal to replace the PV for a gas, with the "thermal energy" of a solid or liquid with the same number of particles (moles) as that gas, is complete nonsense!! There is no reason to imagine tha tis true.

A solid or gas has no "volumetric energy." Its pressure may well be zero, so PV is zero, and what's the volumetric energy then? Nothing.SBHarris 06:19, 24 July 2013 (UTC)

Damorbel:

If, as above, the solid has N particles, then the thermal energy is the temperature

to be seen by rearranging equ.(2) :-

 . . . . . . . . . .(3)

This is the temperature T because we have chosen N which means there is one mole of particles.

NB Please try to edit outside my arguments, you have put your contrib. right between the two points I am making above.

--Damorbel (talk) 13:14, 23 July 2013 (UTC)


Sbharris Comment: Damorbel refuses to read the article on heat capacity. If he did, he'd know that even the heat capacity of gases is not constant, because gases are not ideal, and gases that aren't composed of single atom moleulces (diatomic gases) aren't even close to ideal.

Even in an ideal gas, the total kinetic energy E of the molecules in a gas is 3/2*RT, which is 3/2 NkT. But it is actually true that PV = nKT. Therefore, you can see that E (kinetic) = 3/2 PV. The total pressure*volume product of N moles of idea gas is not E (the kinetic energy of the molecules of the gas) but actually only 2/3 * E. Poor Damorbel is wrong about even ideal gases, which have 50% more kinetic energy in their molecules, than you would calculate by multiplying P times V. There actually is no connection between the PV product per particle of a gas, and the kinetic energy of that particle. They are not the same, only somewhat close to the same. If you used one to calculate the other, you'd be wrong by 50%.

The equation for the speed of an ideal gas molecule is v^2 = 3kT/m where m is the mass of the molecule. If Damorbel was right, that 3 would be a 2. But it's a 3. It's a shame, but there you are. Damborbel's entire argument rests on the idea that 3 = 2. And that's only the beginning of his error. SBHarris 06:19, 24 July 2013 (UTC)

So what you are saying, Sbharris, is that PV(=work) is not E (=energy)?
There are others who do not agree with you, even in Wikipedia

where it says:-

Work by a gas

 

Where P is pressure, V is volume, and a and b are initial and final volumes.

And you write:-
The equation for the speed of an ideal gas molecule is v^2 = 3kT/m

Very nice, but the matter in hand is the energy of the gas particles, which is independent of the mass (mass = 'm' in your equation) I suggest that the ideal gas equation may be clarified if it is written like this:-

 

where :-

P is pressure
V is volume
n is the number of moles
R is the universal gas constant
T is temperature (K)

(This material is copied from the Gas laws article)

and N = NA is Avogadro's number (the number of particles in a mole (mol)

Looked at this way you can see the relationship of energy, the particle number N, energy per particle (E/N) and it also should be clear that a single particle has an (average) temperature.--Damorbel (talk) 07:55, 24 July 2013 (UTC)

Sorry, but   was NOT copied from the Gas laws article)

gas laws article. The last part of the equation is there, but nothing article says that E = PV for an ideal gas. It is true that E = P(ΔV) when a gas is expanded or contracted by volume ΔV, all the time maintaing constand pressure P. But that's not the E (energy ) IN THE GAS. In that case, it's the energy that leaves the gas or enters the gas as the volume changes by ΔV. It surely does not imply that the kinetic energy of the gas molecules is PV for a volume of gas V. It is not, rather this energy is 3/2 * PV. The kinetic energy of an average gas molecule is 3/2 kT, not kT. Add them all up and you get E(total) = 3/2 NkT = 3/2 PV.

Perhaps you think that the kinetic energy of a gas molecule should be kT and not 3/2 kT. Too bad. In solids where half the energy is kinetic, the figure is 2 (3/2)kT = 3kT or 3RT per mole. Which is why the heat capacity dT/dQ of most solids approaches the Dulong-Petit limit of 3R per mole. SBHarris 03:32, 25 July 2013 (UTC)

Further talk about dimensionality

Soooo..... editor Robert McClenon asked for a reliable source.... can you cite the reliable source where you read these definitions? --Enric Naval (talk) 15:46, 23 July 2013 (UTC)
Yes, editor Enric Naval is quite right.

These are the gas laws and kinetic theory and equations of state, available in Wikipedia, should be known to all thermodynamicists, but are available at NASA --Damorbel (talk) 16:06, 23 July 2013 (UTC)

Those are impressive equations, but that page doesn't mention the words "heat" or "thermal". You can click on the word "Temperature" to reach a page about Temperature", and then click on the word "heat", to reach a page that treats heat as a transfer of energy " If we bring two objects that are initially at different temperatures into physical contact, they eventually achieve thermal equilibrium. During the process of reaching thermal equilibrium, heat is transferred between the objects.". Which of those pages makes the same chain of equations and reaches the same conclusions?
In your comment above you were summarising:
"Heat is measured in joules/mol"
"and:-"
"Thermal energy is measured in joules"
Where is the reliable source for those two definitions? --Enric Naval (talk) 17:08, 23 July 2013 (UTC)


Enric Naval, you write:-

Which of those pages makes the same chain of equations and reaches the same conclusions?

I'm afraid your question is unclear. I am not in the least satisfied with the state of the articles on Heat Temperature and Thermal energy so it is imposible to summarise how they mislead in the conclusions you might reach by reading them!

I thought you should be satisfied with   and the Boltzmann constant
Have you a source that questions these? Or are you seeking further explanations? I am a good tutor but I don't think that is the purpose of talk pages.
I think you should first inform yourself about the units of energy (joules, ergs etc). If you are not able to that it is indeed unfortunate, encyclopedias are not much use for learning the absolute basics, it is a very slow proces! A good tutor is a great help.

--Damorbel (talk) 17:38, 23 July 2013 (UTC)

Damorbel, please drop this. You have failed to make your point. I'm not saying you are wrong. I am simply pointing out that, for whatever reason, the other editors, myself included, have not been able to follow the points you are trying to make. Furthermore, when someone asks you to cite a source, they're likely saying, in effect, "I think you're wrong, but in case I misunderstood, I'll give you the benefit of the doubt long enough for you to bring some evidence". When you don't come back with that evidence, you're done.
It's time to sit back and wait. If another editor would like to chime in with "Yes, I think the article should say that heat is given by J = Cp x T" then we can resume discussing it. Spiel496 (talk) 19:00, 23 July 2013 (UTC)
And with a source, please. It's all too easy to say "this equation can be transformed into this other equation", and then make a flawed assumption in one of the steps, and end up with incorrect conclusions. We only have Damorbel's assurance that the equation is correct (other editors have already told him that his interpretation of Boltzmann constant is inaccurate??)
I would rather have chains of equations that are accepted as correct by hundreds of scientists and published by multiple reputable publishers. As far as I know, Damorbel is not a published expert in thermodynamics, and his equations and conclusions have not been published anywhere?
Wikipedia policies also have to be followed in talk pages, and Damorbel's equations fail the WP:NOR no original research policy: he still hasn't cited a single reliable source that supports his conclusions. Not one source. Zero sources.
He is the one making the claims, and he is the first who should be providing reliable sources to support his claim. --Enric Naval (talk) 20:14, 23 July 2013 (UTC)
To repeat, changing the dimensionality of a physical quantity is a drastic step. Damorbel has proposed changing the dimensionality of heat from Joules to Joules/mol for some reason. An equation cannot be transformed into an equation with different dimensionality. Please cite a reliable source. Robert McClenon (talk) 23:54, 23 July 2013 (UTC)

Question: Isn't the quantity in J/sec actually a rate?

Isn't what is measured in Joules per second actually heat flow rate or heat transfer rate? It is true that heat as used in thermodynamics is not a state variable but a signed quantity representing a transfer. My recollection is that what is non-technically thought of as heat is really enthalpy, which is a state variable that can be changed by a heat transfer. Robert McClenon (talk) 00:47, 23 July 2013 (UTC)

Yes, it's a heat flow rate. Integrate it over time and you get an amount of heat (Q in joules) that flowed. It is this last that is Q in delta U = Q - W, where of course all the units are in energy. SBHarris 01:28, 23 July 2013 (UTC)
That is what I remembered, but I haven't studied thermodynamics in decades. So referring to the quantity above that is in Joules/sec as a flow is less precise than referring to it as a flow rate. Any quantity in /sec is typically a rate. And of course it would be correct to say that the rate is in watts, although with a heat flow rate, it is normally referred to as Joules/sec. Robert McClenon (talk) 01:52, 23 July 2013 (UTC)
It's perfectly kosher to refer to a heat flow in watts = joules/sec. And remember that all these units are lower case when written out, though the symbols are capitalized. It's joules and watts, but 1 J/sec = 1 W. When you write Joule and Watt you're referring to two scientists, not two units. SBHarris 03:38, 23 July 2013 (UTC)


When you write Joule and Watt you're referring to two scientists, not two units.

Thanks for the tip, I have a terrible time with this! --Damorbel (talk) 13:37, 23 July 2013 (UTC)

Correction on capitalization accepted. The units are capitalized when abbreviated and not when written out. Robert McClenon (talk) 23:57, 23 July 2013 (UTC)

Slight apology

I apologize for splitting Damorbel's post. I did that unintentionally. I was just very annoyed that he proposed changing the dimensionality of heat without citing a source. Robert McClenon (talk) 23:57, 23 July 2013 (UTC)