Talk:Affine transformation/Archive 1

Latest comment: 11 years ago by Keenan Pepper in topic Preserve parallels
Archive 1

Rtimes

Help, Wikitex doesn't support \rtimes! How are we ever going to write semidirect products here? Phys (talk) 19:32, 13 August 2003 (UTC)

affine isn't necessarily invertible?

The article says "The set of all affine transformations forms a group under the operation of composition of functions." Don't you have to specify invertible affine transformations? For example, projection of   to   is affine, but not invertible. Or have I misunderstood something?

You're right; I've added the word invertible. Michael Hardy 01:09, 6 February 2005 (UTC)

Yes, simpler example needed here

I'm thinking this needs one more example specific to 2D affine transformations, maybe with a link to iterated function system fractals (where they're very commonly used) and to chaos game. I'll work on a good simple example for a chaos-game article, too, with pseudocode (it only takes about half a dozen lines!) and a few external links.

As a segue out of the "Affine transformations of the plane" section, it would make a lot of sense to give the equations for the 2D case -- which anyone with a good solid high-school algebra background can understand:

X' = Ax + By + C
Y' = Dx + Ey + F

If you know the locations of three (noncollinear) points before and after the transformation, there's a unique solution for real numbers A, B, C, D, E, F -- the problem amounts to solving two sets of three equations with three unknowns each.

Here's [a page I wrote up] some time ago about planar affine transformations as related to mapping applications -- I work for MapInfo, which regularly uses affine transformations to 'warp' vector information onto background raster images. Approximate and ugly sometimes, but very very fast. More MapInfo-specific writeups are here and

Interesting that "Affine transformations of the plane" specifies a parallelogram as the basic unit defining an affine transformation. I always visualized everything in terms of triangles... but of course a parallelogram is just a triangle with a fourth point defined by the other three.

Suggestions would be appreciated for what would/would not be reasonable to add to this article -- I'm new at this game --dvgrn 10:36, 13 April 2005 (UTC)

Example

Why do you have to use such a strange and confusing example? What about transformations with 3 or even only 2 dimensions? IMHO they will be understood by more people. -- KL47 23:40, 3 Dec 2004 (UTC)

It's the affine transform that Rijndael uses for its S-box. See Rijndael S-box or AES. Samboy 08:04, 18 May 2005 (UTC)

Arabic interwiki link

As far as I can tell, the Arabic interwiki link pointing here is for "Linear transformation." --Urdutext 23:53, 8 January 2007 (UTC)

Line Preserving

"In a geometric setting, affine transformations are precisely the functions that map straight lines to straight lines." Don't projective transformations also map straight lines to straight lines? 128.163.141.13 21:09, 22 June 2007 (UTC)

The "vector" B

I am 99% sure this is a point, not a vector.

B is the translation vector, it translates coordinates it is applied to. Also note that vectors can denote points, so this comment did not make much sense to me. --62.163.111.132 (talk) 21:12, 15 January 2008 (UTC)
Strictly speaking, a point in an affine space is different from a translation vector between two points. Points don't have a "zero" whereas vectors do. This distinction is often overlooked. —Ben FrantzDale (talk) 14:10, 7 February 2008 (UTC)

"Affine function"

Affine function redirects here. It is mentioned on Karush–Kuhn–Tucker_conditions#Sufficient_conditions in contrast with convex function. This page doesn't include the string "affine function". Could someone explain that meaning? —Ben FrantzDale (talk) 02:18, 29 May 2008 (UTC)

Relationship to Computer Graphics and Projective Geometry?

Much of the world's computer graphics software represents affine transforms in n dimensional space by linear transforms in n+1 dimensions. The n+1 space is treated (i think) as a projective space. Is it worth mentioning here? I'm too green to know. 192.55.12.36 (talk) 15:34, 2 June 2008 (UTC)

Affinely dependent

Similarly they are affinely dependent if the same is true and also

 

I think this is incorrect. I don't have a book, but here is a sample from lectures:

An affine dependence between points ... is a linear dependence ... (Thus, in an affine combination, the coefficients sum to 1, while in an affine dependence, they sum to 0.)

Beroal (talk) 12:48, 11 November 2008 (UTC)

Linear Manifold vs. Affine Subspace

Many authors don't use linear manifold to denote an affine subspace. For example, in "Intro to Hilbert Spaces" Halmos uses linear manifold to mean a linear subspace of a Hilbert space (pg. 21). The distinction here is that a linear manifold is not necessarily closed, and thus not necessarily a subspace in the Hilbert space sense. I think Dudley uses this definition also in "Real Analysis and Probability".

I suggest removing the (at best controversial, at worst erroneous) definition of linear manifold in this article and instead making linear manifold redirect to the topological vector space article.

Bradweir (talk) 02:43, 22 August 2009 (UTC)

Names of A and b?

What are the textbook names of A and b in:  ? In Portuguese textbooks, they are called by "coeficiente angular" e "coeficiente linear", which could be translated as "angular coefficient" and "linear coefficient". In Excel, they are called "slope" and "intercept". Albmont (talk) 12:49, 14 January 2010 (UTC)

Two symbols for xor

Is there a reason to use two different symbols for xor in this article? -Craig Pemberton 07:35, 3 February 2010 (UTC)

So '+' and (+) both are used to mean XOR? This was very confusing. The use of (+) with no explanation needs to be fixed. Don't possess the knowledge to do so myself —Preceding unsigned comment added by 72.177.191.195 (talk) 18:30, 20 February 2010 (UTC)

I'm not sure about anyone else, but it seems to me that (+) seems to be the more accepted symbol for XOR. Why not just use that? Burningstarfour (talk) 02:52, 27 April 2011 (UTC)

The example

I don't think a 7x7 matrix under a particular definition of addition really serves as the best example to illustrate what an affine transformation is, when the geometric interpretation is the only one most people will ever see. Maybe if someone has the time, just draw up a simple example with a shear and reflection, followed by a translation, in R^2, to give an illustration that is approximately similar to the visual of the fern at the top of the page. Charibdis (talk) 00:52, 25 May 2010 (UTC)

As mentioned above, the particular 7x7 matrix given is the Rijndael S-box, used in the AES cryptosystem. However, your point is well-taken; a geometric example would, in my opinion, be helpful. If I have time in the next few days I'll write one up. --Burningstarfour (talk) 02:56, 27 April 2011 (UTC)

Huh??

Is this really an arena of human knowledge that defies a simple, straightforward, plain-language explanation? Really? Look, I'm not a mathematician, but I nonetheless would like to know what an Affine transformation is, but I have no more idea now than before visiting this page. — Preceding unsigned comment added by 66.192.126.3 (talk) 17:39, 28 October 2011 (UTC)

You are right. It needs a simple explanation. It's something like "a transformation in which straight lines remain strait". That is, a linear transformation along with a translation. —Ben FrantzDale (talk) 17:42, 28 October 2011 (UTC)

Please cf. Berger's book on page 38

  • Berger, Marcel (1987), Geometry I, Berlin: Springer, ISBN 3-540-11658-3

In fact, one can read: The conclusion is that, heuristically,   consists of a translation and a linear map. But I agre with you: it is not well-written.

Another definition is: Given two affine spaces   and  , over the same field, a function   is an affine map if and only if for every family   of weighted points in   such that   we have

 

In other words,   preserves barycenters. Mgvongoeden (talk) 19:27, 28 October 2011 (UTC)

Planar mapping

Today the section on affine mapping of the plane was revised. Reference to eigenvalues of matrix A were removed as this link involves the reader in linear algebra that is unnecessary and perhaps beyond comprehension. The case of the plane lends itself to exhaustive treatment because 2 x 2 real matrices are well-known so all types of affine transformation can be described.Rgdboer (talk) 21:56, 14 August 2012 (UTC)

Preserve parallels

Affine transformations respect the relation of parallel lines. This fact appears in major references. The term dilation is commonly used. Today's edits revise the lead paragraph accordingly.Rgdboer (talk) 23:20, 20 August 2012 (UTC)

"The term dilation is commonly used." Really? I have never heard this term used this way. A rotation is a kind of dilation? Do you have a source that uses the term "dilation" like this? —Keenan Pepper 21:41, 28 September 2012 (UTC)