In mathematical analysis, the Szegő limit theorems describe the asymptotic behaviour of the determinants of large Toeplitz matrices.[1][2][3] They were first proved by Gábor Szegő.

Notation edit

Let   be a Fourier series with Fourier coefficients  , relating to each other as

 
 

such that the   Toeplitz matrices   are Hermitian, i.e., if   then  . Then both   and eigenvalues   are real-valued and the determinant of   is given by

 .

Szegő theorem edit

Under suitable assumptions the Szegő theorem states that

 

for any function   that is continuous on the range of  . In particular

 

(1)

such that the arithmetic mean of   converges to the integral of  .[4]

First Szegő theorem edit

The first Szegő theorem[1][3][5] states that, if right-hand side of (1) holds and  , then

 

(2)

holds for   and  . The RHS of (2) is the geometric mean of   (well-defined by the arithmetic-geometric mean inequality).

Second Szegő theorem edit

Let   be the Fourier coefficient of  , written as

 

The second (or strong) Szegő theorem[1][6] states that, if  , then

 

See also edit

References edit

  1. ^ a b c Böttcher, Albrecht; Silbermann, Bernd (1990). "Toeplitz determinants". Analysis of Toeplitz operators. Berlin: Springer-Verlag. p. 525. ISBN 3-540-52147-X. MR 1071374.
  2. ^ Ehrhardt, T.; Silbermann, B. (2001) [1994], "Szegö_limit_theorems", Encyclopedia of Mathematics, EMS Press
  3. ^ a b Simon, Barry (2011). Szegő's Theorem and Its Descendants: Spectral Theory for L2 Perturbations of Orthogonal Polynomials. Princeton: Princeton University Press. ISBN 978-0-691-14704-8.
  4. ^ Gray, Robert M. (2006). "Toeplitz and Circulant Matrices: A Review" (PDF). Foundations and Trends in Signal Processing.
  5. ^ Szegő, G. (1915). "Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion". Math. Ann. 76 (4): 490–503. doi:10.1007/BF01458220. S2CID 123034653.
  6. ^ Szegő, G. (1952). "On certain Hermitian forms associated with the Fourier series of a positive function". Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.]: 228–238. MR 0051961.