• Steric 5-cube
  • Stericantic 5-cube
  • Steriruncic 5-cube
  • Steriruncicantic 5-cube
Orthogonal projections in B5 Coxeter plane

In five-dimensional geometry, a steric 5-cube or (steric 5-demicube or sterihalf 5-cube) is a convex uniform 5-polytope. There are unique 4 steric forms of the 5-cube. Steric 5-cubes have half the vertices of stericated 5-cubes.

Steric 5-cube

edit
Steric 5-cube
Type uniform polyteron
Schläfli symbol
  • t0,3{3,32,1}
  • h4{4,3,3,3
}
Coxeter-Dynkin diagram
  •        
  •          
4-faces 82
Cells 480
Faces 720
Edges 400
Vertices 80
Vertex figure {3,3}-t1{3,3} antiprism
Coxeter groups D5, [32,1,1]
Properties convex

Alternate names

edit
  • Steric penteract, runcinated demipenteract
  • Small prismated hemipenteract (siphin) (Jonathan Bowers)[1]: (x3o3o *b3o3x - siphin) 

Cartesian coordinates

edit

The Cartesian coordinates for the 80 vertices of a steric 5-cube centered at the origin are the permutations of

(±1,±1,±1,±1,±3)

with an odd number of plus signs.

Images

edit
orthographic projections
Coxeter plane B5
Graph  
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph    
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph    
Dihedral symmetry [4] [4]
edit
Dimensional family of steric n-cubes
n 5 6 7 8
[1+,4,3n-2]
= [3,3n-3,1]
[1+,4,33]
= [3,32,1]
[1+,4,34]
= [3,33,1]
[1+,4,35]
= [3,34,1]
[1+,4,36]
= [3,35,1]
Steric
figure
       
Coxeter          
=        
           
=          
             
=            
               
=              
Schläfli h4{4,33} h4{4,34} h4{4,35} h4{4,36}

Stericantic 5-cube

edit
Stericantic 5-cube
Type uniform polyteron
Schläfli symbol
  • t0,1,3{3,32,1}
  • h2,4{4,3,3,3
}
Coxeter-Dynkin diagram
  •        
  •          
4-faces 82
Cells 720
Faces 1840
Edges 1680
Vertices 480
Vertex figure
Coxeter groups D5, [32,1,1]
Properties convex

Alternate names

edit
  • Prismatotruncated hemipenteract (pithin) (Jonathan Bowers)[1]: (x3x3o *b3o3x - pithin) 

Cartesian coordinates

edit

The Cartesian coordinates for the 480 vertices of a stericantic 5-cube centered at the origin are coordinate permutations:

(±1,±1,±3,±3,±5)

with an odd number of plus signs.

Images

edit
orthographic projections
Coxeter plane B5
Graph  
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph    
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph    
Dihedral symmetry [4] [4]

Steriruncic 5-cube

edit
Steriruncic 5-cube
Type uniform polyteron
Schläfli symbol
  • t0,2,3{3,32,1}
  • h3,4{4,3,3,3
}
Coxeter-Dynkin diagram
  •        
  •          
4-faces 82
Cells 560
Faces 1280
Edges 1120
Vertices 320
Vertex figure
Coxeter groups D5, [32,1,1]
Properties convex

Alternate names

edit
  • Prismatorhombated hemipenteract (pirhin) (Jonathan Bowers)[1]: (x3o3o *b3x3x - pirhin) 

Cartesian coordinates

edit

The Cartesian coordinates for the 320 vertices of a steriruncic 5-cube centered at the origin are coordinate permutations:

(±1,±1,±1,±3,±5)

with an odd number of plus signs.

Images

edit
orthographic projections
Coxeter plane B5
Graph  
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph    
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph    
Dihedral symmetry [4] [4]

Steriruncicantic 5-cube

edit
Steriruncicantic 5-cube
Type uniform polyteron
Schläfli symbol
  • t0,1,2,3{3,32,1}
  • h2,3,4{4,3,3,3
}
Coxeter-Dynkin diagram
  •        
  •          
4-faces 82
Cells 720
Faces 2080
Edges 2400
Vertices 960
Vertex figure
Coxeter groups D5, [32,1,1]
Properties convex

Alternate names

edit
  • Great prismated hemipenteract (giphin) (Jonathan Bowers)[1]: (x3x3o *b3x3x - giphin) 

Cartesian coordinates

edit

The Cartesian coordinates for the 960 vertices of a steriruncicantic 5-cube centered at the origin are coordinate permutations:

(±1,±1,±3,±5,±7)

with an odd number of plus signs.

Images

edit
orthographic projections
Coxeter plane B5
Graph  
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph    
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph    
Dihedral symmetry [4] [4]
edit

This polytope is based on the 5-demicube, a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family.

There are 23 uniform polytera (uniform 5-polytope) that can be constructed from the D5 symmetry of the 5-demicube, of which are unique to this family, and 15 are shared within the 5-cube family.

D5 polytopes
 
h{4,3,3,3}
 
h2{4,3,3,3}
 
h3{4,3,3,3}
 
h4{4,3,3,3}
 
h2,3{4,3,3,3}
 
h2,4{4,3,3,3}
 
h3,4{4,3,3,3}
 
h2,3,4{4,3,3,3}

References

edit
  1. ^ a b c d Klitzing, Richard. "5D uniform polytopes (polytera)".

Further reading

edit
edit
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds