Solovay–Kitaev theorem

In quantum information and computation, the Solovay–Kitaev theorem says that if a set of single-qubit quantum gates generates a dense subgroup of SU(2), then that set can be used to approximate any desired quantum gate with a short sequence of gates that can also be found efficiently. This theorem is considered one of the most significant results in the field of quantum computation and was first announced by Robert M. Solovay in 1995 and independently proven by Alexei Kitaev in 1997.[1][2] Michael Nielsen and Christopher M. Dawson have noted its importance in the field.[3]

A consequence of this theorem is that a quantum circuit of constant-qubit gates can be approximated to error (in operator norm) by a quantum circuit of gates from a desired finite universal gate set.[4] By comparison, just knowing that a gate set is universal only implies that constant-qubit gates can be approximated by a finite circuit from the gate set, with no bound on its length. So, the Solovay–Kitaev theorem shows that this approximation can be made surprisingly efficient, thereby justifying that quantum computers need only implement a finite number of gates to gain the full power of quantum computation.

Statement edit

Let   be a finite set of elements in SU(2) containing its own inverses (so   implies  ) and such that the group   they generate is dense in SU(2). Consider some  . Then there is a constant   such that for any  , there is a sequence   of gates from   of length   such that  . That is,   approximates   to operator norm error.[3] Furthermore, there is an efficient algorithm to find such a sequence. More generally, the theorem also holds in SU(d) for any fixed d.

This theorem also holds without the assumption that   contains its own inverses, although presently with a larger value of   that also increases with the dimension  .[5]

Quantitative bounds edit

The constant   can be made to be   for any fixed  .[6] However, there exist particular gate sets for which we can take  , which makes the length of the gate sequence optimal up to a constant factor.[7]

Proof idea edit

Every known proof of the fully general Solovay–Kitaev theorem proceeds by recursively constructing a gate sequence giving increasingly good approximations to  .[3] Suppose we have an approximation   such that  . Our goal is to find a sequence of gates approximating   to   error, for  . By concatenating this sequence of gates with  , we get a sequence of gates   such that  .

The main idea in the original argument of Solovay and Kitaev is that commutators of elements close to the identity can be approximated "better-than-expected". Specifically, for   satisfying   and   and approximations   satisfying   and  , then

 

where the big O notation hides higher-order terms. One can naively bound the above expression to be  , but the group commutator structure creates substantial error cancellation.

We can use this observation to approximate   as a group commutator  . This can be done such that both   and   are close to the identity (since  ). So, if we recursively compute gate sequences approximating   and   to   error, we get a gate sequence approximating   to the desired better precision   with  . We can get a base case approximation with constant   with an exhaustive search of bounded-length gate sequences.

References edit

  1. ^ Kitaev, A Yu (1997-12-31). "Quantum computations: algorithms and error correction". Russian Mathematical Surveys. 52 (6): 1191–1249. Bibcode:1997RuMaS..52.1191K. doi:10.1070/rm1997v052n06abeh002155. ISSN 0036-0279. S2CID 250816585.
  2. ^ Kitaev, Alexei Yu.; Shen, Alexander; Vyalyi, Mikhail N. (2002). Classical and quantum computation. Providence, Rhode Island: American Mathematical Society. ISBN 0-8218-2161-X. OCLC 48965167.
  3. ^ a b c Dawson, Christopher M.; Nielsen, Michael (2006-01-01). "The Solovay-Kitaev algorithm". Quantum Information & Computation. 6: 81–95. arXiv:quant-ph/0505030. doi:10.26421/QIC6.1-6.
  4. ^ Nielsen, Michael A.; Chuang, Isaac L. (2010). "The Solovay–Kitaev theorem". Quantum Computation and Quantum Information: 10th Anniversary Edition. pp. 617–624. doi:10.1017/cbo9780511976667.019. ISBN 9780511976667. Retrieved 2020-05-20.
  5. ^ Bouland, Adam; Giurgica-Tiron, Tudor (2021-12-03), Efficient Universal Quantum Compilation: An Inverse-free Solovay-Kitaev Algorithm, arXiv:2112.02040
  6. ^ Kuperberg, Greg (2023-06-22), "Breaking the cubic barrier in the Solovay-Kitaev algorithm", arXiv:2306.13158 [quant-ph]
  7. ^ Ross, Neil J.; Selinger, Peter. "Optimal ancilla-free Clifford+T approximation of z-rotations". Quantum Information & Computation. 16 (11–12): 901–953. arXiv:1403.2975. doi:10.26421/QIC16.11-12-1.