Rock analogs for structural geology

This is a compilation of the properties of different analog materials used to simulate deformational processes in structural geology. Such experiments are often called analog or analogue models. The organization of this page follows the review of rock analog materials in structural geology and tectonics of Reber et al. 2020.[1]

Materials used to simulate upper crustal deformation edit

 
A sample of light colored, fine grained sand that has been used in analog experiments. Other sands have various grain sizes, colors and compositions.

These materials need to exhibit brittle deformation upon failure as well as elastic and viscous deformation before failure.

Materials that simulate upper crustal deformation edit

Material Applications Studies
Plexiglas and glass Plexiglas and glass is useful for many applications. Some of which are: Erdogan & Sih 1963;[4] Thomas and Pollard 1993;[5] Cooke & Pollard,1996;[6] Daniels & Hayman, 2008;[2] Lu, Lapusta & Rosakis,2007;[7] Owens & Daniels, 2011;[3] Rubino, Rosakis, & Lapusta, 2019[8]
Gelatin Gelatin has been used to simulate: Bot, vanAmerongon, Groot, Hoekstra, & Agterof, 1996;[21] Brizzi, Funiciello, Corbi, Di Giuseppe, & Mojoli, 2016;[22] Canon-Tapia and Merle, 2006;[14] Corbi et al., 2011;[12] Corbi et al., 2013;[13] Di Giuseppe et al., 2009;[23] Hyndman & Alt, 1987;[15] Kavanagh, Menand, & Daniels, 2013;[24] Kavanagh, Menand, & Sparks, 2006;[16] Kervyn, Ernst, de Vires, Mathieu, & Jacobs, 2009;[17] Kobchenko et al., 2014;[9] Lee, Reber, Hayman, & Wheeler, 2016;[10] Menand & Tait, 2002;[18] Pollard, 1973;[19] Rivalta, Bottinger, & Dahm, 2005;[20] Touvet, Balmforth, Craster, & Sutherland, 2011;[11] van Otterloo & Cruden, 2016[25]
Foam Foam is mostly used as an analog simulating elastic loading on the crust between earthquake events.[26][27][28][29] If the foam used has a low stiffness, it can be dynamically scaled to preexisting fault surfaces' and earthquake cycles[30] Anooshehpoor & Brune,1999;[26] Anooshehpoor, Heaton, Shi & Brune, 1999;[27] Brune,1973;[28] Caniven et al., 2015;[29] Rosenau et al., 2017;[30] Rosenau, Lohrmann, & Oncken, 2009;[31] Rosenau & Oncken, 2009[32]
Clays Clay is used to simulate deformation in the upper crust through distributed deformation and localized failure. The properties of clay depend on the mineralogy, grain size distribution and water content. Bonanno, et al., 2017;[33] Bonini et al., 2016;[34] Cooke and van der Elst, 2012;[35] DeGroot & Lunne, 2007;[36] Eisenstadt & Sims, 2005;[37] Hatem, Cooke, & Toeneboehn, 2017;[38] Henza, Withjack, & Schlische, 2010;[39] Kenny, 1967;[40] Mitra & Paul, 2011;[41] Paul & Mitra, 2013;[42] Toeneboehn, 2017;[43] Toeneboehn, 2018;[44] White, 1949;[45] Withjack, Henza, & Schlische, 2017[46]

Dry granular materials edit

 
This is a picture of white plastic beads used as a material in analog experiments.
Material Applications Studies
Sand During deformation, sand exhibits distributed deformation, compaction followed by dilatation, prior to failure via grain rearrangement. Sand is often used to simulate folding or faulting.[47] Abdelmalak et al., 2016;[48] Cobbold, Durand, & Mourgues, 2001;[49] Daniels & Hayman, 2008;[2] Davis, Suppe, & Dahlen,1983;[47] Galland, Burchardt, Hallot, Mourgues, & Bulois, 2014;[50] Galland, Cobbold, Hallot, d'Ars, & Delavaud, 2006;[51] Gomes, 2013;[52] Hayman, Ducloue, Foco, & Daniels, 2011;[53] Herbert et al., 2015;[54] Klinkmuller et al., 2016;[55] Lohrmann et al, 2003;[56] Panien, Buiter, Schreurs, & Pfiffner, 2006;[57] Rosenau et al., 2009[31]
Micro beads Micro beads are useful for:
  • Situations where low friction and mechanical layering are desired in crustal and lithospheric models[58][59][60]
  • Salt tectonic modeling[61][62] because of adjustable density
Boutelier, Schrank, & Cruden, 2008;[58] Dooley, Jackson, & Hudec, 2007;[61] Dooley, Jackson, & Hudec, 2009;[62] Duffy et al., 2018;[63] Hudec, Jackson, & Schttltz-Ela, 2009;[64] Jackson et al., 2019[65] Rossi & Storti, 2003;[59] Schellart, 2000[60]
Other Lentils Lentils have been used to study the distribution of shear surfaces observed in clay rich sediments. Tarling & Rowe, 2016[66]
Crushed Walnut Shells Crushed walnut shells have been used for their low density and non-abrasive nature. Cruz, Teyssier, Perg, Take, & Fayon, 2008[67]
Poppy Seeds Poppy seeds were used in an analog model as particles in suspension for determining the yield strength of subliquidus basalt. Hoover, Cashman, & Manga, 2001[68]
Rice Rice has been used to simulate earthquakes and fault roughness. Rosenau et al., 2009[31]
Sugar Sugar has been used:
  • In subduction earthquake cycle models[31]
  • As an analog for the brittle upper crust[69][70]
Moore, Vendeville, & Wiltschko, 2005;[70] Rosenau et al., 2009;[31] Schellart, 2000;[60] Schellart & Strak, 2016[69]
Sand-hemihydrate calcium sulphate Sand-hemihydrate calcium sulphate mixtures, in different mixing ratios, are used as an "ultra-weak" sandstone to simulate fault and fracture processes in analogue modelling at the outcrop scale (about 10 m). Massaro et al., 2022;[71] Massaro et al., 2023[72]

Materials used to simulate deformation of the lower crust and mantle edit

 
This is a sample of silicone that is used in analog modelling experiments.

Various fluids are used to simulate deformation of the lower crust and mantle, such as: linear, non-linear, and yield stress fluids.

Fluid type Material Application Studies
Linear viscous fluids Silicone Oils/Polymers Silicone oils/polymers can have varying viscosities, which can be changed by adding fillers (dry granular materials) or aolic acid.

In combination with brittle model materials, silicone oils/polymers can investigate many processes in salt tectonics, including the deformation of sediments adjacent and above a salt body.

Boutelier, Schrank, & Cruden, 2008;[58] ten Grotenhuis et al., 2002;[73] Weijermars, 1986;[74] Brun & Fort, 2004;[75] Brun & Mauduit, 2009;[76] Cobbold, Szatmari, Demercian, Coelho, & Rossello, 1995;[77] Dooley & Hudec, 2017;[78] Dooley et al., 2009;[62] Dooley, Jackson & Hudec, 2013;[79] Dooley, Jackson & Hudec, 2015;[80] Duffy et al., 2018;[63] Letouzey, Colletta, Vially & Chermette, 1995;[81] Smit, Brun, Fort, Cloetingh, & Ben-Avraham, 2008;[82] Vendeville & Jackson, 1992;[83] Weijermars, 1986;[74] Weijermars, Jackson, & Vendeville, 1993[84]
Honey* Honey, glucose syrup, and molasses exhibit strain independent deformation. The viscosity depends on the sugar content and temperature of the material. This makes them suitable to simulate the lower crust and mantle.

*Honey can also be used as a non-linear viscous fluid under certain conditions.

Schellart, 2011[85]
Glucose Syrup
Molasses
Gum Rosin Gum rosin was used to study thermomechanical processes in the lithospheric mantle. Cobbold & Jackson, 1992[86]
Water Water has been used to model any low viscosity material. Paola et al., 2006[87]
Non-linear viscous fluids Silicone Oils/Polymers Silicone is also used as a non-linear viscous material by adding high amounts of filler. The most common filler material used is plasticine. Boutelier et al., 2008;[58] Rudolf, Boutelier, Rosenau, Schreurs, & Oncken, 2016[88]
Bingham fluid Paraffin Wax Paraffin wax can be used in analog experiments as a linear or non-linear yield stress fluid. By mixing paraffin wax with petrolatum, the yield stress, shear thinning, and shear softening behavior can be modified. Duarte et al., 2014;[89] Rossetti et al.,1999[90]
Petrolatum Petrolatum is commonly used as:
  • A filler with paraffin wax
  • A lubricant

At this time, pure petrolatum has not been used for analog material.

Cobbold, 1975;[91] Duarte et al., 2014;[89] Neurath and Smith, 1892[92]
Hershel-Bulkley fluid Carbopol Carbopol has been used in analogue models of:
  • Gravity driven flow[93]
  • Rayleigh-Benard-like convection[94]
  • Localized shear zones[95]
  • Thermal intrusions[96]
  • Semi-brittle processes[97][98]
Balmforth & Rust, 2009;[94] Birren & Reber, 2019;[97] Davaille et al., 2013;[96] Di Federico et al., 2017;[93] Reber et al., 2015;[98] Schrank, Boutelier, & Cruden, 2008[95]

Materials used to simulate deformation of the middle crust edit

Composite Model Materials edit

 
The material photographed above is polyurethane discs. The left side of image shows the discs under normal light. The right side of the image what can be observed when a polarizer is placed above the discs.

Composite materials combine phases with different physical properties. A common composite mixture contains dry granular materials and fluids. These analog materials have been used:

  • Sediment transport (Parker et al., 1982[99]) using low viscosity fluids
  • Dynamics in the middle crust (Mookerjee et al., 2017;[100] Reber et al., 2014[101]) employing high viscosity fluids
  • Stick-slip dynamics (Higashi and Sumita, 2009;[102] Reber et al., 2014[101])
  • Strain softening and hardening processes (Panien et al., 2006[57])

The most commonly used granular materials in composite mixtures are:

  • Sand
  • Glass beads
  • Acrylic discs
A sample of carbopol. It is a clear, gel-like substance that is commonly used in modeling experiments.
A micro-photograph of the modeling material carbopol.

Common fluids used in composite mixtures are:

  • Carbopol
  • Silicone
  • Wax, which can behave as a brittle or viscous material depending on the melting temperature (Mookerjee et al., 2017[100])

Visco-elasto-plastic model materials edit

Visco-elasto-plastic deformation exhibits a combination of elastic, viscous, and plastic deformation at the same time. Various asphalts and bituminous materials demonstrate visco-elasto-plastic deformation but they are rarely as modeling materials (McBirney and Best, 1961[103]).Common modeling materials demonstrating complex rheology are;

  • Carbopol (Piau, 2007;[104] Shafiei et al., 2018[105])
  • Kaolinite clay (Cooke and van der Elst, 2012[35])

References edit

  1. ^ Reber, Jacqueline E.; Cooke, Michele L.; Dooley, Tim P. (March 2020). "What model material to use? A Review on rock analogs for structural geology and tectonics". Earth-Science Reviews. 202: 103107. Bibcode:2020ESRv..20203107R. doi:10.1016/j.earscirev.2020.103107. S2CID 213244464.
  2. ^ a b c Daniels, Karen E.; Hayman, Nicholas W. (2008-11-26). "Force chains in seismogenic faults visualized with photoelastic granular shear experiments". Journal of Geophysical Research. 113 (B11): B11411. Bibcode:2008JGRB..11311411D. doi:10.1029/2008JB005781. ISSN 0148-0227.
  3. ^ a b Owens, E. T.; Daniels, K. E. (2011-06-01). "Sound propagation and force chains in granular materials". EPL (Europhysics Letters). 94 (5): 54005. arXiv:1007.3908. Bibcode:2011EL.....9454005O. doi:10.1209/0295-5075/94/54005. ISSN 0295-5075. S2CID 35748572.
  4. ^ a b Erdogan, F.; Sih, G. C. (1 December 1963). "On the Crack Extension in Plates Under Plane Loading and Transverse Shear". Journal of Basic Engineering. 85 (4): 519–525. doi:10.1115/1.3656897.
  5. ^ a b Thomas, Andrew L.; Pollard, David D. (March 1993). "The geometry of echelon fractures in rock: implications from laboratory and numerical experiments". Journal of Structural Geology. 15 (3–5): 323–334. Bibcode:1993JSG....15..323T. doi:10.1016/0191-8141(93)90129-X.
  6. ^ a b Cooke, Michele L.; Pollard, David D. (1996-02-10). "Fracture propagation paths under mixed mode loading within rectangular blocks of polymethyl methacrylate". Journal of Geophysical Research: Solid Earth. 101 (B2): 3387–3400. Bibcode:1996JGR...101.3387C. doi:10.1029/95JB02507.
  7. ^ a b Lu, X.; Lapusta, N.; Rosakis, A. J. (2007-11-27). "Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes". Proceedings of the National Academy of Sciences. 104 (48): 18931–18936. doi:10.1073/pnas.0704268104. ISSN 0027-8424. PMC 2141885. PMID 18025479.
  8. ^ a b Rubino, V.; Rosakis, A. J.; Lapusta, N. (June 2019). "Full-field Ultrahigh-speed Quantification of Dynamic Shear Ruptures Using Digital Image Correlation". Experimental Mechanics. 59 (5): 551–582. doi:10.1007/s11340-019-00501-7. ISSN 0014-4851.
  9. ^ a b Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Renard, François; Galland, Olivier; Jamtveit, Bjørn; Meakin, Paul; Dysthe, Dag Kristian (2014-11-04). "Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion". Physical Review E. 90 (5): 052801. Bibcode:2014PhRvE..90e2801K. doi:10.1103/PhysRevE.90.052801. ISSN 1539-3755. PMID 25493828.
  10. ^ a b Lee, Sanghyun; Reber, Jacqueline E.; Hayman, Nicholas W.; Wheeler, Mary F. (2016-08-16). "Investigation of wing crack formation with a combined phase-field and experimental approach: WING CRACK WITH PHASE FIELD". Geophysical Research Letters. 43 (15): 7946–7952. doi:10.1002/2016GL069979.
  11. ^ a b Touvet, T.; Balmforth, N. J.; Craster, R. V.; Sutherland, B. R. (2011-04-10). "Fingering instability in buoyancy-driven fluid-filled cracks" (PDF). Journal of Fluid Mechanics. 672: 60–77. Bibcode:2011JFM...672...60T. doi:10.1017/S0022112010005860. hdl:10044/1/12605. ISSN 0022-1120. S2CID 14532284.
  12. ^ a b Corbi, F.; Funiciello, F.; Faccenna, C.; Ranalli, G.; Heuret, A. (2011-06-17). "Seismic variability of subduction thrust faults: Insights from laboratory models". Journal of Geophysical Research. 116 (B6): B06304. Bibcode:2011JGRB..116.6304C. doi:10.1029/2010JB007993. ISSN 0148-0227.
  13. ^ a b Corbi, F.; Funiciello, F.; Moroni, M.; van Dinther, Y.; Mai, P. M.; Dalguer, L. A.; Faccenna, C. (April 2013). "The seismic cycle at subduction thrusts: 1. Insights from laboratory models: SUBDUCTION SEISMIC CYCLE SIMULATIONS: 1". Journal of Geophysical Research: Solid Earth. 118 (4): 1483–1501. doi:10.1029/2012JB009481. hdl:10754/552180. S2CID 128524088.
  14. ^ a b Cañón-Tapia, E.; Merle, O. (November 2006). "Dyke nucleation and early growth from pressurized magma chambers: Insights from analogue models". Journal of Volcanology and Geothermal Research. 158 (3–4): 207–220. Bibcode:2006JVGR..158..207C. doi:10.1016/j.jvolgeores.2006.05.003.
  15. ^ a b Hyndman, D. W.; Alt, D. (November 1987). "Radial Dikes, Laccoliths, and Gelatin Models". The Journal of Geology. 95 (6): 763–774. Bibcode:1987JG.....95..763H. doi:10.1086/629176. ISSN 0022-1376. S2CID 128562770.
  16. ^ a b Kavanagh, Janine L.; Menand, Thierry; Sparks, R. Stephen J. (May 2006). "An experimental investigation of sill formation and propagation in layered elastic media". Earth and Planetary Science Letters. 245 (3–4): 799–813. Bibcode:2006E&PSL.245..799K. doi:10.1016/j.epsl.2006.03.025.
  17. ^ a b Kervyn, M.; Ernst, G. G. J.; van Wyk de Vries, B.; Mathieu, L.; Jacobs, P. (2009-03-03). "Volcano load control on dyke propagation and vent distribution: Insights from analogue modeling" (PDF). Journal of Geophysical Research. 114 (B3): B03401. Bibcode:2009JGRB..114.3401K. doi:10.1029/2008JB005653. ISSN 0148-0227.
  18. ^ a b Menand, Thierry; Tait, Stephen R. (November 2002). "The propagation of a buoyant liquid-filled fissure from a source under constant pressure: An experimental approach: LIQUID-FILLED CRACK PROPAGATION" (PDF). Journal of Geophysical Research: Solid Earth. 107 (B11): ECV 16–1–ECV 16-14. doi:10.1029/2001JB000589.
  19. ^ a b Pollard, David D. (October 1973). "Derivation and evaluation of a mechanical model for sheet intrusions". Tectonophysics. 19 (3): 233–269. Bibcode:1973Tectp..19..233P. doi:10.1016/0040-1951(73)90021-8.
  20. ^ a b Rivalta, E.; Böttinger, M.; Dahm, T. (June 2005). "Buoyancy-driven fracture ascent: Experiments in layered gelatine". Journal of Volcanology and Geothermal Research. 144 (1–4): 273–285. Bibcode:2005JVGR..144..273R. doi:10.1016/j.jvolgeores.2004.11.030.
  21. ^ Bot, Arjen; van Amerongen, Ivo A.; Groot, Robert D.; Hoekstra, Niko L.; Agterof, Wim G.M. (January 1996). "Large deformation rheology of gelatin gels". Polymer Gels and Networks. 4 (3): 189–227. doi:10.1016/0966-7822(96)00011-1.
  22. ^ Brizzi, S.; Funiciello, F.; Corbi, F.; Di Giuseppe, E.; Mojoli, G. (June 2016). "Salt matters: How salt affects the rheological and physical properties of gelatine for analogue modelling". Tectonophysics. 679: 88–101. Bibcode:2016Tectp.679...88B. doi:10.1016/j.tecto.2016.04.021.
  23. ^ Di Giuseppe, E.; Funiciello, F.; Corbi, F.; Ranalli, G.; Mojoli, G. (August 2009). "Gelatins as rock analogs: A systematic study of their rheological and physical properties". Tectonophysics. 473 (3–4): 391–403. Bibcode:2009Tectp.473..391D. doi:10.1016/j.tecto.2009.03.012.
  24. ^ Kavanagh, J.L.; Menand, T.; Daniels, K.A. (January 2013). "Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions" (PDF). Tectonophysics. 582: 101–111. Bibcode:2013Tectp.582..101K. doi:10.1016/j.tecto.2012.09.032.
  25. ^ van Otterloo, Jozua; Cruden, Alexander R. (June 2016). "Rheology of pig skin gelatine: Defining the elastic domain and its thermal and mechanical properties for geological analogue experiment applications". Tectonophysics. 683: 86–97. Bibcode:2016Tectp.683...86V. doi:10.1016/j.tecto.2016.06.019.
  26. ^ a b Anooshehpoor, Abdolrasool; Brune, James N. (1999-07-01). "Wrinkle-like Weertman pulse at the interface between two blocks of foam rubber with different velocities". Geophysical Research Letters. 26 (13): 2025–2028. Bibcode:1999GeoRL..26.2025A. doi:10.1029/1999GL900397.
  27. ^ a b Anooshehpoor, A., Heaton, T. H., Shi, B. P., & Brune, J. N. (1999). Estimates of the ground accelerations at Point Reyes Station during the 1906 San Francisco earthquake. Bulletin of the Seismological Society of America, 89(4), 845-853.
  28. ^ a b Brune, J. N. (1973). Earthquake modeling by stick-slip along precut surfaces in stressed foam rubber    Bulletin of the Seismological Society of America, 63(6), 2105-2119.
  29. ^ a b Caniven, Y.; Dominguez, S.; Soliva, R.; Cattin, R.; Peyret, M.; Marchandon, M.; Romano, C.; Strak, V. (2015). "A new multilayered visco-elasto-plastic experimental model to study strike-slip fault seismic cycle: An analog model of earthquake cycle". Tectonics. 34 (2): 232–264. doi:10.1002/2014TC003701.
  30. ^ a b Rosenau, Matthias; Corbi, Fabio; Dominguez, Stephane (2017-05-19). "Analogue earthquakes and seismic cycles: experimental modelling across timescales". Solid Earth. 8 (3): 597–635. Bibcode:2017SolE....8..597R. doi:10.5194/se-8-597-2017. ISSN 1869-9529.
  31. ^ a b c d e Rosenau, Matthias; Lohrmann, Jo; Oncken, Onno (January 2009). "Shocks in a box: An analogue model of subduction earthquake cycles with application to seismotectonic forearc evolution: SUBDUCTION EARTHQUAKE MODEL". Journal of Geophysical Research: Solid Earth. 114 (B1). doi:10.1029/2008JB005665.
  32. ^ Rosenau, Matthias; Oncken, Onno (2009-10-27). "Fore-arc deformation controls frequency-size distribution of megathrust earthquakes in subduction zones". Journal of Geophysical Research. 114 (B10): B10311. Bibcode:2009JGRB..11410311R. doi:10.1029/2009JB006359. ISSN 0148-0227.
  33. ^ Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio (September 2017). "How do horizontal, frictional discontinuities affect reverse fault-propagation folding?". Journal of Structural Geology. 102: 147–167. Bibcode:2017JSG...102..147B. doi:10.1016/j.jsg.2017.08.001. hdl:11368/2912162.
  34. ^ Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Burrato, Pierfrancesco; Seno, Silvio; Valensise, Gianluca (August 2016). "The effects of pre-existing discontinuities on the surface expression of normal faults: Insights from wet-clay analog modeling". Tectonophysics. 684: 157–175. Bibcode:2016Tectp.684..157B. doi:10.1016/j.tecto.2015.12.015. hdl:11368/2849816.
  35. ^ a b Cooke, Michele L.; van der Elst, Nicholas J. (2012). "Rheologic testing of wet kaolin reveals frictional and bi-viscous behavior typical of crustal materials". Geophysical Research Letters. 39 (1): n/a. Bibcode:2012GeoRL..39.1308C. doi:10.1029/2011GL050186. S2CID 129709961.
  36. ^ DeGroot, D. J., & Lunne, T. (2007). Measurement of Remoulded Shear Strength. Norwegian Geotechnical Institute. Report, 20061021--20061023.
  37. ^ Eisenstadt, Gloria; Sims, Darrell (August 2005). "Evaluating sand and clay models: do rheological differences matter?". Journal of Structural Geology. 27 (8): 1399–1412. Bibcode:2005JSG....27.1399E. doi:10.1016/j.jsg.2005.04.010.
  38. ^ Hatem, Alexandra E.; Cooke, Michele L.; Toeneboehn, Kevin (August 2017). "Strain localization and evolving kinematic efficiency of initiating strike-slip faults within wet kaolin experiments". Journal of Structural Geology. 101: 96–108. Bibcode:2017JSG...101...96H. doi:10.1016/j.jsg.2017.06.011.
  39. ^ Henza, Alissa A.; Withjack, Martha O.; Schlische, Roy W. (November 2010). "Normal-fault development during two phases of non-coaxial extension: An experimental study". Journal of Structural Geology. 32 (11): 1656–1667. Bibcode:2010JSG....32.1656H. doi:10.1016/j.jsg.2009.07.007.
  40. ^ Kenny, T. C. (1967). The influence of mineral composition on the residual strength of natural soils. TRID, 1, 123-129.
  41. ^ Mitra, Shankar; Paul, Debapriya (July 2011). "Structural geometry and evolution of releasing and restraining bends: Insights from laser-scanned experimental models". AAPG Bulletin. 95 (7): 1147–1180. Bibcode:2011BAAPG..95.1147M. doi:10.1306/09271010060. ISSN 0149-1423.
  42. ^ Paul, Debapriya; Mitra, Shankar (May 2013). "Experimental models of transfer zones in rift systems". AAPG Bulletin. 97 (5): 759–780. Bibcode:2013BAAPG..97..759P. doi:10.1306/10161212105. ISSN 0149-1423.
  43. ^ Toeneboehn, K., 2017, Exploring Long-term Fault Evolution in Obliquely Loaded Systems Using Tabletop Experiments and Digital Image Correlation Techniques [MS: University of Massachusetts Amherst].
  44. ^ Toeneboehn, Kevin; Cooke, Michele L.; Bemis, Sean P.; Fendick, Anne M. (2018-10-10). "Stereovision Combined With Particle Tracking Velocimetry Reveals Advection and Uplift Within a Restraining Bend Simulating the Denali Fault". Frontiers in Earth Science. 6: 152. Bibcode:2018FrEaS...6..152T. doi:10.3389/feart.2018.00152. hdl:10919/95190. ISSN 2296-6463.
  45. ^ White, A. W. (1949). Atterberg plastic limits of clay minerals. American Mineralogist: Journal of Earth and Planetary Materials, 34, 508-512.
  46. ^ Withjack, Martha Oliver; Henza, Alissa A.; Schlische, Roy W. (November 2017). "Three-dimensional fault geometries and interactions within experimental models of multiphase extension". AAPG Bulletin. 101 (11): 1767–1789. Bibcode:2017BAAPG.101.1767W. doi:10.1306/02071716090. ISSN 0149-1423.
  47. ^ a b Davis, Dan; Suppe, John; Dahlen, F. A. (1983). "Mechanics of fold-and-thrust belts and accretionary wedges". Journal of Geophysical Research. 88 (B2): 1153. Bibcode:1983JGR....88.1153D. doi:10.1029/JB088iB02p01153. ISSN 0148-0227.
  48. ^ Abdelmalak, M.M.; Bulois, C.; Mourgues, R.; Galland, O.; Legland, J.-B.; Gruber, C. (August 2016). "Description of new dry granular materials of variable cohesion and friction coefficient: Implications for laboratory modeling of the brittle crust". Tectonophysics. 684: 39–51. Bibcode:2016Tectp.684...39A. doi:10.1016/j.tecto.2016.03.003.
  49. ^ Cobbold, P.R.; Durand, S.; Mourgues, R. (June 2001). "Sandbox modelling of thrust wedges with fluid-assisted detachments". Tectonophysics. 334 (3–4): 245–258. Bibcode:2001Tectp.334..245C. doi:10.1016/S0040-1951(01)00070-1.
  50. ^ Galland, Olivier; Burchardt, Steffi; Hallot, Erwan; Mourgues, Régis; Bulois, Cédric (August 2014). "Dynamics of dikes versus cone sheets in volcanic systems: Dynamics of dikes versus cone sheets" (PDF). Journal of Geophysical Research: Solid Earth. 119 (8): 6178–6192. doi:10.1002/2014JB011059.
  51. ^ Galland, Olivier; Cobbold, Peter R.; Hallot, Erwan; de Bremond d'Ars, Jean; Delavaud, Gatien (March 2006). "Use of vegetable oil and silica powder for scale modelling of magmatic intrusion in a deforming brittle crust". Earth and Planetary Science Letters. 243 (3–4): 786–804. Bibcode:2006E&PSL.243..786G. doi:10.1016/j.epsl.2006.01.014.
  52. ^ Gomes, Caroline Janette Souza (January 2013). "Investigating new materials in the context of analog-physical models". Journal of Structural Geology. 46: 158–166. Bibcode:2013JSG....46..158G. doi:10.1016/j.jsg.2012.09.013.
  53. ^ Hayman, Nicholas W.; Ducloué, Lucie; Foco, Kate L.; Daniels, Karen E. (December 2011). "Granular Controls on Periodicity of Stick-Slip Events: Kinematics and Force-Chains in an Experimental Fault". Pure and Applied Geophysics. 168 (12): 2239–2257. Bibcode:2011PApGe.168.2239H. doi:10.1007/s00024-011-0269-3. ISSN 0033-4553. S2CID 11213193.
  54. ^ Herbert, Justin W.; Cooke, Michele L.; Souloumiac, Pauline; Madden, Elizabeth H.; Mary, Baptiste C.L.; Maillot, Bertrand (December 2015). "The work of fault growth in laboratory sandbox experiments". Earth and Planetary Science Letters. 432: 95–102. Bibcode:2015E&PSL.432...95H. doi:10.1016/j.epsl.2015.09.046.
  55. ^ Klinkmüller, M.; Schreurs, G.; Rosenau, M.; Kemnitz, H. (August 2016). "Properties of granular analogue model materials: A community wide survey". Tectonophysics. 684: 23–38. Bibcode:2016Tectp.684...23K. doi:10.1016/j.tecto.2016.01.017.
  56. ^ Lohrmann, Jo; Kukowski, Nina; Adam, Jürgen; Oncken, Onno (2003). "The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges". Journal of Structural Geology. 25 (10): 1691–1711. Bibcode:2003JSG....25.1691L. doi:10.1016/S0191-8141(03)00005-1.
  57. ^ a b Panien, M.; Buiter, S. J. H.; Schreurs, G.; Pfiffner, O. A. (2006). "Inversion of a symmetric basin: insights from a comparison between analogue and numerical experiments". Geological Society, London, Special Publications. 253 (1): 253–270. Bibcode:2006GSLSP.253..253P. doi:10.1144/gsl.sp.2006.253.01.13. ISSN 0305-8719. S2CID 129573252.
  58. ^ a b c d Boutelier, D.; Schrank, C.; Cruden, A. (March 2008). "Power-law viscous materials for analogue experiments: New data on the rheology of highly-filled silicone polymers". Journal of Structural Geology. 30 (3): 341–353. Bibcode:2008JSG....30..341B. doi:10.1016/j.jsg.2007.10.009.
  59. ^ a b Rossi, David; Storti, Fabrizio (November 2003). "New artificial granular materials for analogue laboratory experiments: aluminium and siliceous microspheres". Journal of Structural Geology. 25 (11): 1893–1899. Bibcode:2003JSG....25.1893R. doi:10.1016/S0191-8141(03)00041-5.
  60. ^ a b c Schellart, W.P. (September 2000). "Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling". Tectonophysics. 324 (1–2): 1–16. Bibcode:2000Tectp.324....1S. doi:10.1016/S0040-1951(00)00111-6.
  61. ^ a b Dooley, Tim P.; Jackson, Martin P. A.; Hudec, Michael R. (January 2007). "Initiation and growth of salt-based thrust belts on passive margins: results from physical models". Basin Research. 19 (1): 165–177. Bibcode:2007BasR...19..165D. doi:10.1111/j.1365-2117.2007.00317.x. ISSN 0950-091X. S2CID 129804374.
  62. ^ a b c Dooley, Tim P.; Jackson, Martin P.A.; Hudec, Michael R. (June 2009). "Inflation and deflation of deeply buried salt stocks during lateral shortening". Journal of Structural Geology. 31 (6): 582–600. Bibcode:2009JSG....31..582D. doi:10.1016/j.jsg.2009.03.013.
  63. ^ a b Duffy, Oliver B.; Fernandez, Naiara; Peel, Frank J.; Hudec, Michael R.; Dooley, Tim P.; Jackson, Christopher A.-L. (2019-06-29). "Obstructed minibasins on a salt-detached slope: An example from above the Sigsbee canopy, northern Gulf of Mexico". Basin Research. 32 (preprint): 505–524. doi:10.1111/bre.12380. ISSN 0950-091X. S2CID 202900763.
  64. ^ Hudec, Michael R.; Jackson, Martin P.A.; Schultz-Ela, Daniel D. (January 2009). "The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins". Geological Society of America Bulletin. 121 (1–2): 201–221. doi:10.1130/B26275.1. ISSN 0016-7606.
  65. ^ Jackson, Christopher A.-L.; Duffy, Oliver B.; Fernandez, Naiara; Dooley, Tim P.; Hudec, Michael R.; Jackson, Martin P. A.; Burg, George (2019-08-22). "The stratigraphic record of minibasin subsidence, Precaspian Basin, Kazakhstan". Basin Research. 32 (preprint): 739–763. doi:10.1111/bre.12393. ISSN 0950-091X. S2CID 201303602.
  66. ^ Tarling, Matthew S.; Rowe, Christie D. (March 2016). "Experimental slip distribution in lentils as an analog for scaly clay fabrics". Geology. 44 (3): 183–186. Bibcode:2016Geo....44..183T. doi:10.1130/G37306.1. ISSN 0091-7613. S2CID 261973470.
  67. ^ Cruz, Leonardo; Teyssier, Christian; Perg, Lesley; Take, Andy; Fayon, Annia (January 2008). "Deformation, exhumation, and topography of experimental doubly-vergent orogenic wedges subjected to asymmetric erosion". Journal of Structural Geology. 30 (1): 98–115. Bibcode:2008JSG....30...98C. doi:10.1016/j.jsg.2007.10.003.
  68. ^ Hoover, S.R; Cashman, K.V; Manga, M (June 2001). "The yield strength of subliquidus basalts — experimental results". Journal of Volcanology and Geothermal Research. 107 (1–3): 1–18. Bibcode:2001JVGR..107....1H. doi:10.1016/S0377-0273(00)00317-6.
  69. ^ a b Schellart, Wouter P.; Strak, Vincent (October 2016). "A review of analogue modelling of geodynamic processes: Approaches, scaling, materials and quantification, with an application to subduction experiments". Journal of Geodynamics. 100: 7–32. Bibcode:2016JGeo..100....7S. doi:10.1016/j.jog.2016.03.009.
  70. ^ a b Moore, Vernon M.; Vendeville, Bruno C.; Wiltschko, David V. (July 2005). "Effects of buoyancy and mechanical layering on collisional deformation of continental lithosphere: Results from physical modeling". Tectonophysics. 403 (1–4): 193–222. Bibcode:2005Tectp.403..193M. doi:10.1016/j.tecto.2005.04.004.
  71. ^ Massaro, L.; Adam, J.; Jonade, E.; Yamada, Y. (November 2022). "New granular rock-analogue materials for simulation of multi-scale fault and fracture processes". Geological Magazine. 159 (11–12): 2036–2059. Bibcode:2022GeoM..159.2036M. doi:10.1017/S0016756821001321. ISSN 0016-7568.
  72. ^ Massaro, L.; Adam, J.; Yamada, Y. (2023-05-20). "Mechanical characterisation of new Sand-Hemihydrate rock-analogue material: Implications for modelling of brittle crust processes". Tectonophysics. 855: 229828. Bibcode:2023Tectp.85529828M. doi:10.1016/j.tecto.2023.229828. ISSN 0040-1951.
  73. ^ ten Grotenhuis, Saskia M.; Piazolo, Sandra; Pakula, T.; Passchier, Cees W.; Bons, Paul D. (May 2002). "Are polymers suitable rock analogs?". Tectonophysics. 350 (1): 35–47. Bibcode:2002Tectp.350...35T. doi:10.1016/S0040-1951(02)00080-X.
  74. ^ a b Weijermars, Ruud (April 1986). "Flow behaviour and physical chemistry of bouncing putties and related polymers in view of tectonic laboratory applications". Tectonophysics. 124 (3–4): 325–358. Bibcode:1986Tectp.124..325W. doi:10.1016/0040-1951(86)90208-8. ISSN 0040-1951.
  75. ^ Brun, Jean-Pierre; Fort, Xavier (April 2004). "Compressional salt tectonics (Angolan margin)". Tectonophysics. 382 (3–4): 129–150. Bibcode:2004Tectp.382..129B. doi:10.1016/j.tecto.2003.11.014.
  76. ^ Brun, Jean-Pierre; Mauduit, Thomas P.-O. (February 2009). "Salt rollers: Structure and kinematics from analogue modelling". Marine and Petroleum Geology. 26 (2): 249–258. Bibcode:2009MarPG..26..249B. doi:10.1016/j.marpetgeo.2008.02.002.
  77. ^ Cobbold, P. R., Szatmari, P., Demercian, L. S., Coelho, D., & Rossello, E. A. (1995). Seismic and experimental evidence for thin-skinned horizontal shortening by convergent radial gliding on evaporites, deep-water Santos Basin, Brazil (Vol. 65).
  78. ^ Dooley, Tim P.; Hudec, Michael R. (February 2017). "The effects of base-salt relief on salt flow and suprasalt deformation patterns — Part 2: Application to the eastern Gulf of Mexico". Interpretation. 5 (1): SD25–SD38. Bibcode:2017Int.....5D..25D. doi:10.1190/INT-2016-0088.1. ISSN 2324-8858.
  79. ^ Dooley, Tim P.; Jackson, Martin P. A.; Hudec, Michael R. (October 2013). "Coeval extension and shortening above and below salt canopies on an uplifted, continental margin: Application to the northern Gulf of Mexico". AAPG Bulletin. 97 (10): 1737–1764. Bibcode:2013BAAPG..97.1737D. doi:10.1306/03271312072. ISSN 0149-1423.
  80. ^ Dooley, T. P.; Jackson, M. P. A.; Hudec, M. R. (February 2015). "Breakout of squeezed stocks: dispersal of roof fragments, source of extrusive salt and interaction with regional thrust faults". Basin Research. 27 (1): 3–25. Bibcode:2015BasR...27....3D. doi:10.1111/bre.12056. S2CID 140726767.
  81. ^ Letouzey, J.; Colletta, B.; Vially, R.; Chermette, J. C. (1995). "Evolution of salt-related structures in compressional settings". In Jackson, M. P. A.; Roberts, D. G.; Snelson, S. (eds.). Salt tectonics: a global perspective. AAPG Memoir. Vol. 65. pp. 41–60.
  82. ^ Smit, J.; Brun, J.-P.; Fort, X.; Cloetingh, S.; Ben-Avraham, Z. (March 2008). "Salt tectonics in pull-apart basins with application to the Dead Sea Basin". Tectonophysics. 449 (1–4): 1–16. Bibcode:2008Tectp.449....1S. doi:10.1016/j.tecto.2007.12.004.
  83. ^ Vendeville, B.C.; Jackson, M.P.A. (August 1992). "The rise of diapirs during thin-skinned extension". Marine and Petroleum Geology. 9 (4): 331–354. Bibcode:1992MarPG...9..331V. doi:10.1016/0264-8172(92)90047-I.
  84. ^ Weijermars, R.; Jackson, M.P.A.; Vendeville, B. (January 1993). "Rheological and tectonic modeling of salt provinces". Tectonophysics. 217 (1–2): 143–174. Bibcode:1993Tectp.217..143W. doi:10.1016/0040-1951(93)90208-2.
  85. ^ Schellart, W.P. (June 2011). "Rheology and density of glucose syrup and honey: Determining their suitability for usage in analogue and fluid dynamic models of geological processes". Journal of Structural Geology. 33 (6): 1079–1088. Bibcode:2011JSG....33.1079S. doi:10.1016/j.jsg.2011.03.013.
  86. ^ Cobbold, P.R.; Jackson, M.P.A. (September 1992). "Gum rosin (colophony): A suitable material for thermomechanical modelling of the lithosphere". Tectonophysics. 210 (3–4): 255–271. Bibcode:1992Tectp.210..255C. doi:10.1016/0040-1951(92)90325-Z.
  87. ^ Paola, Chris; Straub, Kyle; Mohrig, David; Reinhardt, Liam (December 2009). "The "unreasonable effectiveness" of stratigraphic and geomorphic experiments". Earth-Science Reviews. 97 (1–4): 1–43. Bibcode:2009ESRv...97....1P. doi:10.1016/j.earscirev.2009.05.003.
  88. ^ Rudolf, Michael; Boutelier, David; Rosenau, Matthias; Schreurs, Guido; Oncken, Onno (August 2016). "Rheological benchmark of silicone oils used for analog modeling of short- and long-term lithospheric deformation". Tectonophysics. 684: 12–22. Bibcode:2016Tectp.684...12R. doi:10.1016/j.tecto.2015.11.028.
  89. ^ a b Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R. (June 2014). "Rheology of petrolatum–paraffin oil mixtures: Applications to analogue modelling of geological processes". Journal of Structural Geology. 63: 1–11. Bibcode:2014JSG....63....1D. doi:10.1016/j.jsg.2014.02.004.
  90. ^ Rossetti, F., Ranalli, G., and Faccenna, C., 1999, Rheological properties of paraffin as an analogue material for viscous crustal deformation: Journal of Structural Geology, v. 21, no. 4, p. 413-417.
  91. ^ Cobbold, P.R. (August 1975). "Fold propagation in single embedded layers". Tectonophysics. 27 (4): 333–351. Bibcode:1975Tectp..27..333C. doi:10.1016/0040-1951(75)90003-7.
  92. ^ Neurath, C.; Smith, R.B. (January 1982). "The effect of material properties on growth rates of folding and boudinage: Experiments with wax models". Journal of Structural Geology. 4 (2): 215–229. Bibcode:1982JSG.....4..215N. doi:10.1016/0191-8141(82)90028-1.
  93. ^ a b Di Federico, V.; Longo, S.; King, S. E.; Chiapponi, L.; Petrolo, D.; Ciriello, V. (2017-06-25). "Gravity-driven flow of Herschel–Bulkley fluid in a fracture and in a 2D porous medium" (PDF). Journal of Fluid Mechanics. 821: 59–84. Bibcode:2017JFM...821...59D. doi:10.1017/jfm.2017.234. hdl:20.500.11820/688c8ca0-fac0-41bf-aa82-d2855d3e20a9. ISSN 0022-1120. S2CID 54201296.
  94. ^ a b Balmforth, Neil J.; Rust, Alison C. (May 2009). "Weakly nonlinear viscoplastic convection". Journal of Non-Newtonian Fluid Mechanics. 158 (1–3): 36–45. doi:10.1016/j.jnnfm.2008.07.012.
  95. ^ a b Schrank, Christoph E.; Boutelier, David A.; Cruden, Alexander R. (February 2008). "The analogue shear zone: From rheology to associated geometry". Journal of Structural Geology. 30 (2): 177–193. Bibcode:2008JSG....30..177S. doi:10.1016/j.jsg.2007.11.002.
  96. ^ a b Davaille, Anne; Gueslin, Blandine; Massmeyer, Anna; Giuseppe, Erika Di (2013). "Thermal instabilities in a yield stress fluid: Existence and morphology". Journal of Non-Newtonian Fluid Mechanics. 193: 144–153. doi:10.1016/j.jnnfm.2012.10.008.
  97. ^ a b Birren, T.; Reber, J. E. (March 2019). "The Impact of Rheology on the Transition From Stick-Slip to Creep in a Semibrittle Analog". Journal of Geophysical Research: Solid Earth. 124 (3): 3144–3154. Bibcode:2019JGRB..124.3144B. doi:10.1029/2018JB016914. ISSN 2169-9313.
  98. ^ a b Reber, Jacqueline E.; Lavier, Luc L.; Hayman, Nicholas W. (September 2015). "Experimental demonstration of a semi-brittle origin for crustal strain transients". Nature Geoscience. 8 (9): 712–715. Bibcode:2015NatGe...8..712R. doi:10.1038/ngeo2496. ISSN 1752-0894.
  99. ^ Parker, G., Dhamotharan, S., and Stefan, H., 1982, Model experiments on mobile, paved gravel bed streams   Water Resources Research, v. 18, no. 5, p. 1395-1408.
  100. ^ a b Mookerjee, Matty; Kucker, Kyle; Swain, Taylor; Martin, Daniel; Paquette, Paige (February 2017). "Analog modeling of fault asperity kinematics using a modified squeeze-box design and wax media". Interpretation. 5 (1): SD67–SD80. Bibcode:2017Int.....5D..67M. doi:10.1190/INT-2016-0090.1. ISSN 2324-8858.
  101. ^ a b Reber, J. E., Hayman, N. W., & Lavier, L. L. (2014). Stick-slip and creep behavior in lubricated granular material: insights into the brittle-ductile transition. Geophysical Research Letters, 41, 3471-3477.
  102. ^ Higashi, Naoya; Sumita, Ikuro (2009-04-28). "Experiments on granular rheology: Effects of particle size and fluid viscosity". Journal of Geophysical Research. 114 (B4): B04413. Bibcode:2009JGRB..114.4413H. doi:10.1029/2008JB005999. ISSN 0148-0227.
  103. ^ McBIRNEY, A. R.; Best, Myron G. (1961). "Experimental Deformation of Viscous Layers in Oblique Stress Fields". Geological Society of America Bulletin. 72 (3): 495. Bibcode:1961GSAB...72..495M. doi:10.1130/0016-7606(1961)72[495:EDOVLI]2.0.CO;2. ISSN 0016-7606.
  104. ^ Piau, J.M. (June 2007). "Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges". Journal of Non-Newtonian Fluid Mechanics. 144 (1): 1–29. doi:10.1016/j.jnnfm.2007.02.011. ISSN 0377-0257.
  105. ^ Shafiei, Mohammadreza; Balhoff, Matthew; Hayman, Nicholas W. (March 2018). "Chemical and microstructural controls on viscoplasticity in Carbopol hydrogel". Polymer. 139: 44–51. doi:10.1016/j.polymer.2018.01.080. ISSN 0032-3861.