The ratio of uniforms is a method initially proposed by Kinderman and Monahan in 1977[1] for pseudo-random number sampling, that is, for drawing random samples from a statistical distribution. Like rejection sampling and inverse transform sampling, it is an exact simulation method. The basic idea of the method is to use a change of variables to create a bounded set, which can then be sampled uniformly to generate random variables following the original distribution. One feature of this method is that the distribution to sample is only required to be known up to an unknown multiplicative factor, a common situation in computational statistics and statistical physics.

Motivation edit

 
Rejection sampling of a bounded statistical distribution with finite support.

A convenient technique to sample a statistical distribution is rejection sampling. When the probability density function of the distribution is bounded and has finite support, one can define a bounding box around it (a uniform proposal distribution), draw uniform samples in the box and return only the x coordinates of the points that fall below the function (see graph). As a direct consequence of the fundamental theorem of simulation,[2] the returned samples are distributed according to the original distribution.

When the support of the distribution is infinite, it is impossible to draw a rectangular bounding box containing the graph of the function. One can still use rejection sampling, but with a non-uniform proposal distribution. It can be delicate to choose an appropriate proposal distribution,[3] and one also has to know how to efficiently sample this proposal distribution.

The method of the ratio of uniforms offers a solution to this problem, by essentially using as proposal distribution the distribution created by the ratio of two uniform random variables.

Statement edit

The statement and the proof are adapted from the presentation by Gobet[4]

Theorem — Let   be a multidimensional random variable with probability density function   on  . The function   is only required to be known up to a constant, so we can assume that we only know   where  , with   a constant unknown or difficult to compute. Let  , a parameter that can be adjusted as we choose to improve the properties of the method. We can define the set  :

 
The Lebesgue measure of the set   is finite and equal to  .

Furthermore, let   be a random variable uniformly distributed on the set  . Then,   is a random variable on   distributed like  .

Proof

We will first assume that the first statement is correct, i.e.  .

Let   be a measurable function on  . Let's consider the expectation of   on the set  :

 

With the change of variables  , we have

 

where we can see that   has indeed the density  .

Coming back to the first statement, a similar argument shows that  .

Complements edit

Rejection sampling in   edit

The above statement does not specify how one should perform the uniform sampling in  . However, the interest of this method is that under mild conditions on   (namely that   and   for all   are bounded),   is bounded. One can define the rectangular bounding box   such that

 
This allows to sample uniformly the set   by rejection sampling inside  . The parameter   can be adjusted to change the shape of   and maximize the acceptance ratio of this sampling.

Parametric description of the boundary of   edit

The definition of   is already convenient for the rejection sampling step. For illustration purposes, it can be interesting to draw the set, in which case it can be useful to know the parametric description of its boundary:

 
or for the common case where   is a 1-dimensional variable,  .

Generalized ratio of uniforms edit

Here parameterized only with  , the ratio of uniforms can be described with a more general class of transformations.[5]

In the 1-dimensional case, if   is a strictly increasing and differentiable function such that  , then we can define   such that

 

If   is a random variable uniformly distributed in  , then   is distributed with the density  .

Examples edit

 
Exponential distribution before and after change of variables by the ratio of uniforms method. Top: graph of the exponential distribution on  . Bottom: the set   is represented in the space  , inscribed in the bounding box  . The colored domains, of equal probability, were added to help the visual association of the corresponding domains of the transformed sets.

The exponential distribution edit

Assume that we want to sample the exponential distribution,   with the ratio of uniforms method. We will take here  .

We can start constructing the set  :

 

The condition   is equivalent, after computation, to  , which allows us to plot the shape of the set (see graph).

This inequality also allows us to determine the rectangular bounding box   where   is included. Indeed, with  , we have   and  , from where  .

From here, we can draw pairs of uniform random variables   and   until  , and when that happens, we return  , which is exponentially distributed.

 
Normal mixture distribution before and after change of variables by the ratio of uniforms method. Top: graph of the mixture distribution on  . Bottom: the set   is represented for two different values of  . The solid lines on the top represent the de-transformation of the bounding boxes on the bottom. The solid lines on the bottom represent the locations of different values of   in the set.

A mixture of normal distributions edit

Consider the mixture of two normal distributions  . To apply the method of the ratio of uniforms, with a given  , one should first determine the boundaries of the rectangular bounding box   enclosing the set  . This can be done numerically, by computing the minimum and maximum of   and   on a grid of values of  . Then, one can draw uniform samples  , only keep those that fall inside the set   and return them as  .

It is possible to optimize the acceptance ratio by adjusting the value of  , as seen on the graphs.

Software edit

  • The rust[6] and Runuran[7] contributed packages in R.

See also edit

References edit

  1. ^ Kinderman, A. J.; Monahan, J. F. (September 1977). "Computer Generation of Random Variables Using the Ratio of Uniform Deviates". ACM Transactions on Mathematical Software. 3 (3): 257–260. doi:10.1145/355744.355750. S2CID 12884505.
  2. ^ Robert, Christian; Casella, George (2004). Monte Carlo Statistical Methods (2 ed.). Springer-Verlag. p. 47. ISBN 978-0-387-21239-5.
  3. ^ Martino, Luca; Luengo, David; Míguez, Joaquín (16 July 2013). "On the Generalized Ratio of Uniforms as a Combination of Transformed Rejection and Extended Inverse of Density Sampling". p. 13. arXiv:1205.0482 [stat.CO].
  4. ^ GOBET, EMMANUEL (2020). MONTE-CARLO METHODS AND STOCHASTIC PROCESSES : from linear to non-linear. [S.l.]: CRC PRESS. ISBN 978-0-367-65846-5. OCLC 1178639517.
  5. ^ Wakefield, J. C.; Gelfand, A. E.; Smith, A. F. M. (1 December 1991). "Efficient generation of random variates via the ratio-of-uniforms method". Statistics and Computing. 1 (2): 129–133. doi:10.1007/BF01889987. ISSN 1573-1375. S2CID 119824513.
  6. ^ Northrop, P. J. (2021), rust: Ratio-of-Uniforms Simulation with Transformation
  7. ^ Leydold, J.; Hörmann, W. (2021), Runuran: R Interface to the 'UNU.RAN' Random Variate Generators