Preceramic Period in Belize

The Preceramic Period of Belizean and Mesoamerican history began with the arrival of the first Palaeoindians during 20000 BC – 11000 BC, and ended with the Maya development of ceramics during 2000 BC – 900 BC.[note 1][note 2]

Preceramic Period
20000 BC – 2000 BC
Including
  • Palaeoindian (to 8000 BC)
  • Archaic (to 2000 BC)
Key events
  • Palaeoindian settlement
  • lithic tool development
  • introduction of farming
Chronology
None Preclassic Period

Geography edit

During the pre-Columbian era, Belize formed part of Mesoamerica. Traditionally, the first-order subdivisions of the latter follow cultural or political boundaries of Preclassic, Classic, or Postclassic civilisations, eg Mayas and Aztecs. The Maya Region of Mesoamerica is one such. It, in turn, is further subdivided physiographically into at least three regions, ie the Lowlands, the Highlands, and the Pacific. Belize lay within the first of these regions, usually termed the Maya Lowlands.[citation needed]

Climate edit

During the Younger Dryas stage, as the Pleistocene progressed to the Holocene epoch, Belize's climate became increasingly warmer and wetter, its expansive savannah fields increasingly covered by dense tropical broadleaf forests, and its low-lying coast submerged by a 10 ft (3 m) rise in sea levels.[1][2][3][4][5] It is not certain how exactly the first Palaeoindian settlers adapted to such changes, as little Preceramic plant matter has been recovered in the country and surrounding Maya Lowlands.[1][6] It has been suggested, however, that the increasing availability of small, freshwater food-sources, eg molluscs, turtles, and aquatic birds, which attended wetter climatic conditions during the early Holocene, may have driven a slow transition away from a diet heavily reliant on large game towards a broader-spectrum or varied diet incorporating various species of small game and aquatic food-sources.[7]

Demographics edit

Few skeletal findings in Belize and the broader central Maya Lowlands have been dated to the Preceramic, resulting in limited understanding of the period's demographics.[8][9] Remains recovered from caves across the Yucatan Peninsula have been reliably dated to 13000 BC – 12000 BC, such findings constituting the earliest available evidence of human presence in the Lowlands.[10] Genetic studies of Yucatanese remains, and of Lowland remains generally, have tended to confirm demographic models involving multiple migrations from North and South America into the Maya Lowlands.[10][11] For instance, recent genetic studies on Preceramic skeletal remains from southern Belize found common ancestry between these and Preceramic proto-Chichban speakers from the Panama–Colombia region, indicating that the latter settled in southern Belize during 5500 cal BC – 3600 cal BC, and intermixed with pre-existing Palaeoindian residents.[10][12] Further studies also found common ancestry between this population and modern Mayas, suggesting that later Maya settlers of Belize intermixed with pre-existing Palaeoindian residents.[10][12] Generally, however, Palaeoindians in Belize and the Lowlands are not thought to be direct ancestors of later Mayas, the implication being that the latter did not intermix with the former upon settlement.[10][13][note 3]

Technology edit

Lithic edit

 
Preceramic projectile points from Belize / A–C Lowe / D–F Sawmill / G Allspice / H Ya'axche / 2019 Prufer et al. / via PLOS ONE

Lithic technology during the first part of the Preceramic is characterised mainly by Clovis-style ie fluted lanceolate and Fell's Cave-style ie fluted fishtail bifaces.[10] Bifaces recovered from Belize and the Maya Lowlands, however, can seldom be reliably radiocarbon dated.[14][15] A recent exception to this was provided by excavations in Mayahak Cab Pek and Tzibte Yux, rockshelters in southern Belize, which yielded radiocarbon dates of 10450 cal BC – 10085 cal BC and 8275 cal BC – 6650 cal BC for one alternately-bevelled biface and three or four possibly Lowe-style stemmed bifaces, respectively.[14] The relationship of these radiocarbon-dated bifaces to others recovered in Belize is not clear. In particular, it is thought that Sawmill-, Allspice-, and Ya'axche-style bifaces may predate the aforementioned ones, but this conjecture remains unconfirmed.[14]

Bifaces seem to have been phased out in most of Belize and the surrounding Maya Lowlands by circa 6000 BC, with non-bifacial lithic tools replacing them by circa 3400 BC.[16]

In 1983, the Belize Archaic Archaeological Reconnaissance Project (BAAR) proposed a six-phase classification of lithic technology as found in northern Belize.[17][18][19] This classification was subsequently criticised and rejected, being described as 'so badly flawed that the resulting chronology has little merit.'[20][19] An alternative six-phase classification has since been proposed.[19][21]

Phases or types of Preceramic bifacial points recovered in Belize.[note 4]
Phase Type Origin Count Form Length max mean mm Width max mean mm Width neck mean mm Thickness max mean mm Notes
Allspice Provisional Local 4 Stemmed 85.7 37.8 33.2 10.7 cf [note 5]
Clovis Established North America 3 Fluted 71.6 31.0 26.6 7.2 cf [note 6]
Fishtail Established South America 4 Fluted 63.2 43.7 25.3 7.1 cf [note 7]
Lowe Established Local 63 Stemmed 83.5 55.6 29.0 9.8 cf [note 8]
Sawmill Established Local 23 Stemmed 67.9 39.4 14.9 7.8 cf [note 9]
Ya'axche Provisional Local 2 Stemmed 65.7 52.8 29.9 10.9 cf [note 10]

Other edit

Evidence of Preceramic weaving, eg cordage, sandals, baskets, nets, and bags, has been recovered across Mesoamerica, though not in Belize.[22] It has been suggested that their absence in the country is rather due to poor preservation of organic material, rather than due to a lack of weaving by Palaeoindian settlers.[22]

Subsistence edit

The diet of the first Palaeoindian settlers has not been fully elucidated. Faunal remains from Actun Halal in southern Belize suggest these early settlers consumed jute snails, horses, peccaries, common agouti, and spectacled bears.[23] Floral and faunal evidence from the El Gigante rockshelter in Honduras suggests their diet included hog plums, pears, mammee apples, mesquite beans, acorns, deer, birds, turtles, crabs, and snails.[23] Similar evidence from the Santa Marta rockshelter in Chiapas suggests the likely consumption of green tomatoes, craboo, figs, deer, peccary, rabbits, snakes, iguanas, tortoises, and jute snails, and the possible consumption of cacao and teosinte.[23]

The early settlers are thought to have begun farming by circa 4500 BC, with the practice becoming increasingly common by circa 3400 BC.[24] Floral remains from northern and central Belize suggest maize, cassava, chilis, squash, and beans were the main cultivars, these being increasingly relied upon for nutrition during 3000 BC – 1500 BC.[24] This increasing reliance on farmed produce is thought to have resulted in forest disturbance, deforestation, and landscape modification.[24][note 11]

Sites edit

 
 
Actun Halal
 
August Pine Ridge
 
Basil Jones
 
Blackman Eddy
 
Blue Creek
 
Cahal Pech
 
Calakmul
 
Callar Creek
 
Caye Coco+
 
Cayo Frances Lagoon
 
Chichen Itza
 
Coba
 
Cob Swamp
 
Cobweb Swamp
 
Colha
 
Copan
 
Cuello
 
El Mirador
 
Honey Camp Lagoon
 
Izamal
 
Ladyville
 
Lowe Ranch
 
Mayahak Cab Pek
 
Nakbe
 
Palenque
 
Piedras Negras
 
Pulltrouser Swamp
 
Saki Tzul
 
Sand Hill
 
Tikal
 
Tzibte Yux
 
Uxmal+
 
Xunantunich
 
Yaxchilan
Preceramic sites in Belize and surrounding Lowlands / very large Classic sites outside of Belize displayed / Uxmal+ = Uxmal, Tiho / Caye Coco+ = Caye Coco, Betz Landing, Fred Smith / via 2010 Witschey & Brown, 2021 Stemp et al.

Preceramic artefacts have been recovered mainly from northern and central Belize.[17] Preceramic findings in southern Belize 'had been suspiciously absent' since the 1980s, being limited to a few surface finds until quite recently.[17][25] Generally, few Preceramic living spaces have been identified in the Maya Lowlands.[26] Seven Preceramic sites in Belize have been recently proposed as such, ie Saki Tzul, Mayahak Cab Pek, Tzibte Yux, Actun Halal, Caye Coco, Ladyville, and Xunantunich.[26][27] An additional four have been recently proposed as working spaces, eg as lithic workshops, namely, Colha, Kelly, Ladyville, and Callar Creek.[26]

Prominent excavated sites in Belize with Preceramic artefacts, material, or structures.[28][29][30][31][32][note 12]
Name Location Size
Actun Halal Cayo Small
August Pine Ridge Orange Walk Small
Basil Jones Ambergris Caye Small
Betz Landing Corozal Small
Blackman Eddy Cayo Small
Blue Creek Orange Walk Small
Cahal Pech Cayo Large
Callar Creek Cayo Small
Caye Coco Corozal Small
Cayo Frances Lagoon Ambergris Caye Small
Cob Swamp Corozal Small
Cobweb Swamp Corozal Small
Colha Corozal Small
Crawford Bank Belize Small
Cuello Corozal Small
Fred Smith Corozal Small
Honey Camp Lagoon Orange Walk Small
Kelly Belize Small
Ladyville Belize Small
Lowe Ranch Belize Small
Mayahak Cab Pek Toledo Small
Pulltrouser Swamp Corozal Small
Saki Tzul Toledo Small
Sand Hill Belize Small
Tzibte Yux Toledo Small
Xunantunich Cayo Large

Timeline edit

Prominent Preceramic events in Belize or the Maya Lowlands.
Start End Unit Event Notes
13000 12000 BC Earliest appearance of Palaeoindians cf[10][33][note 13]
10450 10085 cal BC Earliest appearance of bifaces ie an alternately-bevelled point; cf[14]
7000 7000 BC Latest appearance of Ice Age megafauna including horses; cf[34]
7000 6000 BC Latest appearance of bifaces cf[14][35][note 14]
4500 4500 BC Earliest appearance of domesticated plant cultivars cf[24][27]
3400 3400 BC Earliest appearance of lithic tools other than bifaces ie blades, macroblades, pointed unifaces; cf[1]
2500 1500 BC Earliest appearance of intensified agriculture ie deforestation, erosion; cf[27]
2200 1900 BC Drought cf[27]

Scholarship edit

The earliest work on Preceramic artefacts from Belize is thought to be that of Augustus Pitt Rivers, who exhibited a flint implement for the Society of Antiquaries of London on 2 March 1871, which had been recovered from the country 'some years ago' by a Royal Navy officer.[36][37][38] The discovery, however, did not spark much interest, as work in the region focussed on Classic Period sites and artefacts.[39][40]

The first significant work was that of the Belize Archaic Archaeological Reconnaissance Project (BAAR), begun in 1980.[39][41][20] BAAR identified some 150 possibly Preceramic sites across the country, and conducted excavations in nine of these, all in northern Belize.[17][20][19]

See also edit

Notes and references edit

Explanatory footnotes edit

  1. ^ The Preceramic Period is variously dated in literature (see Periodisation of the history of Belize for further discussion). For instance, it is dated 11500 BC – 900 BC by Stemp et al. 2021, pp. 416–417, 20000 BC – 2000 BC or 12000 BC – 2000 BC by Sharer & Traxler 2006, pp. 98, 153–154, 35000 BC – 1500 BC or 10000 BC – 1500 BC by Adams & Macleod 2000a, p. 10, 35000 BC – 2300 BC by Pearsall 2008, pp. 163–164. However, Stemp et al. 2021, p. 417 note that ceramics in northern and central Belize have been dated to circa 1200 BC, such that an end period of 900 BC for the Preceramic 'may be too recent.' Additionally, Adams & Macleod 2000a, p. 47 note that 2300 BC 'marks the end of the Preceramic era and, by strict definition, the close of the Archaic[; however, s]ome prehistorians reason that the Archaic period in Mesoamerica should more logically be extended to 1500 [BC], when the transformation from nomadic foraging to a fully sedentary, agricultural way of life was essentially complete throughout the area.' Pearsall 2008, p. 163 similarly note that '[b]y 2300 [BC] pottery was being manufactured in [Mesoamerica], by which definition marks the end of the Preceramic era and its final Archaic period[; s]ome archaeologists, however, prefer to extend the Archaic to 1500 [BC] or later, by which time agriculture provided the bulk of food and the previously nomadic hunter-gatherers had settled in permanent villages.'
  2. ^ The term Lithic Period is sometimes used as a synonym for the Preceramic Period (eg Pearsall 2008, p. 163, eg Adams & Macleod 2000a, p. 46), and at other times as a synonym for the Palaeoindian Period (eg Sharer & Traxler 2006, p. 98).
  3. ^

    What we can take from this [recent genetic studies on Preceramic skeletal remains from southern Belize] is support for the old conclusion that the fluted Clovis and Fishtail [lithic projectile point] traditions of North, Central, and South America were related. Moreover, this technology may have spread as the descendants of one group of early Paleaoindians migrated south through the New World. Among these were the earliest inhabitants of the SBR [Southern Belize Region, in Toledo] dating to the end of the Pleistocene. But these early occupants left an ever-attenuating genetic footprint, either as it was selected against or, much more likely, as later groups arrived. Thus, the much later inhabitants of the SBR and the Maya Area [of Mesoamerica] as a whole may have had some relationship with the Paleoindians of the region 10 millennia earlier, but that relationship probably was quite distant and likely dates to a time before the first Paleoindians left North America and arrived in what today is Belize. Put another way, the genetic evidence that the Maya are direct descendants of the Paleoindians of Central America is very slim and much more strongly suggests that they represent a later migration that, unfortunately, has not yet been dated.

    — Braswell 2022, p. 92.
  4. ^ Excluding over 130 constricted unifaces ie adzes recovered from Belize (Stemp et al. 2021, supp. 1). Counts as of 2021 (Stemp et al. 2021, supp. 1). Length, Width, Thickness data exclude 'significantly damaged bifaces' (Stemp et al. 2021, supp. 1).
  5. ^ Form and Count from Stemp et al. 2021, supp. 1. No associated radiocarbon dates, though 'may be younger than Lowe and Allspice points, based on the observed differences in patination and style of artifacts when all are found in the same area' (Kelly 1993, p. 216).
  6. ^ Form from Stemp et al. 2021, p. 418. Count from Stemp et al. 2021, p. 419. Associated radiocarbon dates not available (Stemp et al. 2021, p. 419). Points recovered from Ladyville and August Pine Ridge (Stemp et al. 2021, supp. 1). American Clovis points adequately dated 11300 – 10600 BP, such that '[o]ne can only postulate a date for [Clovis points from Ladyville] of ca. 10,000 b.c. with a potentially large probable error' (Kelly 1993, p. 224).
  7. ^ Form from Stemp et al. 2021, p. 418. Count from Stemp et al. 2021, p. 419. Associated radiocarbon dates not available (Stemp et al. 2021, p. 419). Points recovered from New River Lagoon, Orange Walk [Town], Big Falls [on Rio Grande], and Lowe Ranch (Stemp et al. 2021, supp. 1).
  8. ^ Form and Count from Stemp et al. 2021, supp. 1. Dated 2500 BC – 1900 BC by Kelly 1993, pp. 215, 224, among others (Braswell 2022, p. 90). Dated to 8200 cal BC – 7300 cal BC more recently, at least for Lowe points recovered in southern Belize (Braswell 2022, pp. 90–91, Awe et al., p. 529).
  9. ^ Form and Count from Stemp et al. 2021, supp. 1.
  10. ^ Form and Count from Stemp et al. 2021, supp. 1.
  11. ^ However, carbon and nitrogen isotopes in bone collagen and bone apatite from human skeletal remains from southern Belize indicate that the diet in this area did not include maize prior to circa 2750 cal BC (Stemp et al. 2021, p. 421, Braswell 2022, p. 92). Additionally, faunal remains from northern Belize indicate that a wide array of game were still being hunted during 3400 BC – 900 BC, including common agouti, armadillo, snakes, turtles, freshwater fish and molluscs, and possibly white-tailed deer (Stemp et al. 2021, pp. 421–422).
  12. ^ Not including various unnamed or minor Preceramic sites.
  13. ^ As of 2022, the earliest Preceramic skeleton recovered in the Lowlands is that of Naia of Hoyo Negro, dated to 12910 cal BP – 12720 cal BP; the earliest recovered in Belize is that of an unnamed individual of Mayahab Cab Pek, dated 9430 cal BP – 9140 cal BP (Tiesler 2022, p. 50, table 1.3.1).
  14. ^ As of 2019, no bifaces recovered in Belize have been dated to 7000 BC – 1900 BC, though it is uncertain whether this represents a gap in contemporary knowledge or one in Preceramic lithic production ie whether this temporal gap indicates an absence of evidence or evidence of an absence (Awe et al. 2021, p. 529).

Short citations edit

  1. ^ a b c Stemp et al. 2021, p. 420.
  2. ^ Adams & Macleod 2000a, p. 47.
  3. ^ Lohse, Borejsza & Joyce 2021, pp. 2–4.
  4. ^ Pearsall 2008, pp. 163, 173.
  5. ^ Prufer et al. 2019, p. 2.
  6. ^ Lohse, Borejsza & Joyce 2021, p. 21.
  7. ^ Awe et al. 2021, pp. 525–526.
  8. ^ Stemp et al. 2021, pp. 417–418.
  9. ^ Braswell 2022, p. 89.
  10. ^ a b c d e f g Stemp et al. 2021, p. 418.
  11. ^ Braswell 2022, pp. 91–92.
  12. ^ a b Awe et al. 2021, p. 524.
  13. ^ Braswell 2022, p. 92.
  14. ^ a b c d e Stemp et al. 2021, p. 419.
  15. ^ Lohse, Borejsza & Joyce 2021, pp. 15–16.
  16. ^ Stemp et al. 2021, pp. 419–420.
  17. ^ a b c d Stemp et al. 2021, p. 417.
  18. ^ Adams & Macleod 2000a, pp. 86–87.
  19. ^ a b c d Kelly 1993, p. 205.
  20. ^ a b c Pearsall 2008, p. 180.
  21. ^ Stemp et al. 2021, supp. 1.
  22. ^ a b Awe et al. 2021, p. 528.
  23. ^ a b c Stemp et al. 2021, pp. 420–421.
  24. ^ a b c d Stemp et al. 2021, p. 421.
  25. ^ Awe et al., p. 527.
  26. ^ a b c Stemp et al. 2021, p. 422.
  27. ^ a b c d Awe et al. 2021, p. 526.
  28. ^ Stemp et al. 2021, p. 417-418, 421-422.
  29. ^ Witschey & Brown 2010.
  30. ^ Adams & Macleod 2000a, pp. 57, 72.
  31. ^ Pearsall 2008, pp. 167, 173.
  32. ^ Awe et al. 2021, p. 527.
  33. ^ Adams & Macleod 2000a, p. 62.
  34. ^ Pearsall 2008, p. 163.
  35. ^ Awe et al. 2021, p. 529.
  36. ^ Fox 1871, p. 93.
  37. ^ Pendergast 1993, p. 4.
  38. ^ Franks 1877, p. 38.
  39. ^ a b Stemp et al. 2021, pp. 416–417.
  40. ^ Adams & Macleod 2000a, p. 26.
  41. ^ Adams & Macleod 2000a, p. 86.

References edit

Journals edit

  1. Akers, Pete D.; Brook, George A.; Railsback, L. Bruce; Liang, Fuyuan; Iannone, Gyles; Webster, James W.; Reeder, Philip P.; Cheng, Hai; Edwards, R. Lawrence (1 October 2016). "An extended and higher-resolution record of climate and land use from stalagmite MC01 from Macal Chasm, Belize, revealing connections between major dry events, overall climate variability, and Maya sociopolitical changes". Palaeogeography, Palaeoclimatology, Palaeoecology. 459: 268–288. Bibcode:2016PPP...459..268A. doi:10.1016/j.palaeo.2016.07.007.
  2. Awe, Jaime J.; Ebert, Claire E.; Stemp, W. James; Brown, M. Kathryn; Sullivan, Lauren A.; Garber, James F. (2021). "Lowland Maya Genesis: The Late Archaic to Late Early Formative Transition in the Upper Belize River Valley". Ancient Mesoamerica. 32 (3): 519–544. doi:10.1017/S0956536121000420. S2CID 245125325.
  3. Cagnato, Clarissa (2021). "Gathering and Sowing Across the Central Maya Lowlands: A Review of Plant Use by Preceramic Peoples to the Early to Middle Preclassic Maya". Ancient Mesoamerica. 32 (3): 486–501. doi:10.1017/S0956536121000225. S2CID 245125329.
  4. Churcher, C. S. (2020). "Pleistocene mammals from Extinction Cave, Belize". Canadian Journal of Earth Sciences. 57 (3): 366–376. Bibcode:2020CaJES..57..366C. doi:10.1139/cjes-2018-0178. S2CID 182629185.
  5. Fox, A. H. Lane (1871). "Flint Implement from Honduras". Proceedings of the Society of Antiquaries of London. Second Series. 5 (2): 93–95. doi:10.1017/S0950797300011616. hdl:2027/hvd.hw2a3c.
  6. Franks, A. W. (1877). "Remarks on Stone Implements from Honduras". Journal of the Anthropological Institute of Great Britain and Ireland. 6: 37–40. doi:10.2307/2841243. hdl:2027/hvd.32044042253526. JSTOR 2841243.
  7. Kelly, Thomas C. (1993). "Preceramic Projectile-Point Typology in Belize". Ancient Mesoamerica. 4 (2): 205–227. doi:10.1017/S0956536100000900. S2CID 161869542.
  8. Kennett, Douglas J.; Lipson, Mark; Prufer, Keith M.; Mora-Marin, David; George, Richard J.; Rohland, Nadin; Robinson, Mark; Trask, Willa R.; Edgar, Heather H. J.; Hill, Ethan C.; Ray, Erin E.; Lynch, Paige (22 March 2022). "South-to-north migration preceded the advent of intensive farming in the Maya region". Nature Communications. 13 (1): 1530. Bibcode:2022NatCo..13.1530K. doi:10.1038/s41467-022-29158-y. PMC 8940966. PMID 35318319.
  9. Lohse, Jon C. (2020). "Early Holocene Cultural Diversity in Central America: Comment on Prufer et al. (2019) "Linking Late Paleoindian Stone Tool Technologies and Populations in North, Central and South America"". Lithic Technology. 45 (2): 59–67. doi:10.1080/01977261.2020.1713609. S2CID 212821933.
  10. Lohse, Jon C.; Awe, Jaime J.; Griffith, Cameron; Rosenswig, Robert M.; Valdez, Fred (2006). "Preceramic Occupations in Belize: Updating the Paleoindian and Archaic Record". Latin American Antiquity. 17 (2): 209–226. doi:10.2307/25063047. JSTOR 25063047. S2CID 163373104.
  11. Metcalfe, Sarah; Breen, Ann; Murray, Malcolm; Furley, Peter; Fallick, Anthony; McKenzie, Angus (2009). "Environmental change in northern Belize since the latest Pleistocene". Journal of Quaternary Science. 24 (6): 627–641. Bibcode:2009JQS....24..627M. doi:10.1002/jqs.1248. S2CID 129891521.
  12. Nielsen, Jasper; Andersen, Bente Jul (2004). "Collecting in Corozal : late Postclassic Maya Effigy Censers from Belize in the Danish National Museum (1860-1865)". Mayab (17): 84–98. ISSN 1130-6157.
  13. Pearson, Georges A. (3 July 2017). "Bridging the Gap: An Updated Overview of Clovis across Middle America and its Techno-Cultural Relation with Fluted Point Assemblages from South America". PaleoAmerica. 3 (3): 203–230. doi:10.1080/20555563.2017.1328953. S2CID 135101506.
  14. Pendergast, David M. (March 1993). "The Center and the Edge: Archaeology in Belize, 1809–1992". Journal of World Prehistory. 7 (1): 1–33. doi:10.1007/BF00978219. JSTOR 25800626. S2CID 161362847.
  15. Pollock, A. L.; Beynen, P. E. van; DeLong, K. L.; Polyak, V.; Asmerom, Y.; Reeder, P. P. (1 December 2016). "A mid-Holocene paleoprecipitation record from Belize". Palaeogeography, Palaeoclimatology, Palaeoecology. 463: 103–111. Bibcode:2016PPP...463..103P. doi:10.1016/j.palaeo.2016.09.021.
  16. Prance, Ghillean T. (1982). "A Review of the Phytogeographic Evidences for Pleistocene Climate Changes in the Neotropics". Annals of the Missouri Botanical Garden. 69 (3): 594–624. doi:10.2307/2399085. JSTOR 2399085.
  17. Prufer, Keith M.; Alsgaard, Asia V.; Robinson, Mark; Meredith, Clayton R.; Culleton, Brendan J.; Dennehy, Timothy; Magee, Shelby; Huckell, Bruce B.; Stemp, W. James; Awe, Jaime J.; Capriles, Jose M.; Kennett, Douglas J. (18 July 2019). "Linking late paleoindian stone tool technologies and populations in North, Central and South America". PLOS ONE. 14 (7): 1-20 of article no. e0219812. Bibcode:2019PLoSO..1419812P. doi:10.1371/journal.pone.0219812. PMC 6638942. PMID 31318917.
  18. Prufer, Keith M.; Robinson, Mark; Kennett, Douglas J. (2021). "Terminal Pleistocene Through Middle Holocene Occupations in Southeastern Mesoamerica: Linking Ecology and Culture in the Context of Neotropical Foragers and Early Farmers". Ancient Mesoamerica. 32 (3): 439–460. doi:10.1017/S0956536121000195. S2CID 245125309.
  19. Rosenswig, Robert M. (2021). "Opinions on the Lowland Maya Late Archaic Period with Some Evidence from Northern Belize". Ancient Mesoamerica. 32 (3): 461–474. doi:10.1017/S0956536121000018. S2CID 245125324.
  20. Stemp, W. James; Awe, Jaime J.; Marcus, Joyce; Helmke, Christophe; Sullivan, Lauren A. (2021). "The Preceramic and Early Ceramic Periods in Belize and the Central Maya Lowlands". Ancient Mesoamerica. 32 (3): 416–438. doi:10.1017/S0956536121000444. S2CID 245125311.
  21. Stemp, W. James; Awe, Jaime J.; Prufer, Keith M.; Helmke, Christophe (2016). "Design and Function of Lowe and Sawmill Points from the Preceramic Period of Belize". Latin American Antiquity. 27 (3): 279–299. doi:10.7183/1045-6635.27.3.279. S2CID 163979743.
  22. Stemp, W. James; Harrison-Buck, Eleanor (2019). "Pre-Maya Lithic Technology in the Wetlands of Belize: The Chipped Stone from Crawford Bank". Lithic Technology. 44 (4): 183–198. doi:10.1080/01977261.2019.1629173. S2CID 197575862.
  23. Valdez Jr., Fred; Sullivan, Lauren A.; Buttles, Palma J.; Aebersold, Luisa (2021). "The Origins and Identification of the Early Maya from Colha and Northern Belize". Ancient Mesoamerica. 32 (3): 502–518. doi:10.1017/S0956536121000468. S2CID 245125274.
  24. Wrobel, Gabriel D.; Hoggarth, Julie A.; Marshall, Aubree (2021). "Before the Maya: A Review of Paleoindian and Archaic Human Skeletons Found in the Maya Region". Ancient Mesoamerica. 32 (3): 475–485. doi:10.1017/S0956536121000250. S2CID 245125288.

Theses edit

Print edit

  1. Adams, Richard E. W.; Macleod, Murdo J., eds. (2000a). Mesoamerica, Part 1. The Cambridge history of the native peoples of the Americas. Vol. 2. Cambridge: Cambridge University Press. doi:10.1017/CHOL9780521351652. ISBN 9781139053778. S2CID 163512332.
  2. Adams, Richard E. W.; Macleod, Murdo J., eds. (2000b). Mesoamerica, Part 2. The Cambridge history of the native peoples of the Americas. Vol. 2. Cambridge: Cambridge University Press. doi:10.1017/CHOL9780521652049. ISBN 9781139053464.
  3. Braswell, Geoffrey E., ed. (2022). 3,000 Years of War and Peace in the Maya Lowlands : Identity, Politics, and Violence. London: Routledge. doi:10.4324/9781351268004. ISBN 9781351268004. S2CID 246542762.
  4. Lohse, Jon C.; Borejsza, Aleksander; Joyce, Arthur A., eds. (2021). Preceramic Mesoamerica. London: Routledge. doi:10.4324/9780429054679. ISBN 9780429054679. LCCN 2020053761. OCLC 1227789483. S2CID 242526375.
  5. Pearsall, Deborah M., ed. (2008). Encyclopedia of Archaeology. San Diego, Calif.: Elsevier. OCLC 714030453.
  6. Sharer, Robert J.; Traxler, Loa P., eds. (2006). The Ancient Maya (6th ed.). Stanford, Calif.: Stanford University Press. hdl:2027/mdp.39015062626216. OCLC 57577446.
  7. Tiesler, Vera, ed. (2022). The Routledge Handbook of Mesoamerican Bioarchaeology. London: Routledge. doi:10.4324/9780429341618. ISBN 9780429341618. S2CID 248676019.

Other edit

  1. Witschey, Walter R. T.; Brown, Clifford T. (2010). The Electronic Atlas of Ancient Maya Sites (Map). [vars. scales]. Corvallis, Oreg.: Heidi Hausman & Conservation Biology Institute.

External links edit

17°00′N 88°30′W / 17.0°N 88.5°W / 17.0; -88.5