The following list shows different orders of magnitude of entropy.
Factor (J⋅K−1) | Value | Item |
---|---|---|
10−24 | 9.5699×10−24 J⋅K−1 | Entropy equivalent of one bit of information, equal to k times ln(2)[1] |
10−23 | 1.381×10−23 J⋅K−1 | Boltzmann constant, entropy equivalent of one nat of information. |
101 | 5.74 J⋅K−1 | Standard entropy of 1 mole of graphite[2] |
1033 | ≈ 1035 J⋅K−1 | Entropy of the Sun (given as ≈ 1042 erg⋅K−1 in Bekenstein (1973))[3] |
1054 | 1.5×1054 J⋅K−1 | Entropy of a black hole of one solar mass (given as ≈ 1060 erg⋅K−1 in Bekenstein (1973))[3] |
1081 | 4.3×1081 J⋅K−1 | One estimate of the theoretical maximum entropy of the universe[4][5] |
See also
edit- Orders of magnitude (data), relates to information entropy
- Order of magnitude (terminology)
References
edit- ^ Jean-Bernard Brissaud (14 February 2005). "The Meaning of Entropy" (PDF). Entropy, 2005, 7[1], 68–96. Retrieved 2010-04-21. page 72 (page 5 of pdf)
- ^ Chung Chieh. "Entropy: A Study Guide". Retrieved 2010-04-21.
- ^ a b Jacob D. Bekenstein (1973). "Black Holes and Entropy" (PDF). Physical Review D. 7 (8): 2333–2346. Bibcode:1973PhRvD...7.2333B. doi:10.1103/PhysRevD.7.2333. S2CID 122636624. Archived from the original (PDF) on 2010-05-23.
- ^ Chas A. Egan; Charles H. Lineweaver (25 January 2010). "A Larger Estimate of the Entropy of the Universe". The Astrophysical Journal. 710 (2): 1825–1834. arXiv:0909.3983. Bibcode:2010ApJ...710.1825E. doi:10.1088/0004-637X/710/2/1825. S2CID 1274173.
3.1×10104k
- ^ Calculated: 3.1×10104 × k = 3.1×10104 × 1.381×10−23 J/K = 4.3×1081 J/K