Mixed Poisson distribution

A mixed Poisson distribution is a univariate discrete probability distribution in stochastics. It results from assuming that the conditional distribution of a random variable, given the value of the rate parameter, is a Poisson distribution, and that the rate parameter itself is considered as a random variable. Hence it is a special case of a compound probability distribution. Mixed Poisson distributions can be found in actuarial mathematics as a general approach for the distribution of the number of claims and is also examined as an epidemiological model.[1] It should not be confused with compound Poisson distribution or compound Poisson process.[2]

mixed Poisson distribution
Notation
Parameters
Support
PMF
Mean
Variance
Skewness
MGF , with the MGF of π
CF
PGF

Definition edit

A random variable X satisfies the mixed Poisson distribution with density π(λ) if it has the probability distribution[3]

 

If we denote the probabilities of the Poisson distribution by qλ(k), then

 

Properties edit

In the following let   be the expected value of the density   and   be the variance of the density.

Expected value edit

The expected value of the mixed Poisson distribution is

 

Variance edit

For the variance one gets[3]

 

Skewness edit

The skewness can be represented as

 

Characteristic function edit

The characteristic function has the form

 

Where   is the moment generating function of the density.

Probability generating function edit

For the probability generating function, one obtains[3]

 

Moment-generating function edit

The moment-generating function of the mixed Poisson distribution is

 

Examples edit

Theorem — Compounding a Poisson distribution with rate parameter distributed according to a gamma distribution yields a negative binomial distribution.[3]

Proof

Let   be a density of a   distributed random variable.

 

Therefore we get  

Theorem — Compounding a Poisson distribution with rate parameter distributed according to a exponential distribution yields a geometric distribution.

Proof

Let   be a density of a   distributed random variable. Using integration by parts n times yields:

 
Therefore we get  

Table of mixed Poisson distributions edit

mixing distribution mixed Poisson distribution[4]
gamma negative binomial
exponential geometric
inverse Gaussian Sichel
Poisson Neyman
generalized inverse Gaussian Poisson-generalized inverse Gaussian
generalized gamma Poisson-generalized gamma
generalized Pareto Poisson-generalized Pareto
inverse-gamma Poisson-inverse gamma
log-normal Poisson-log-normal
Lomax Poisson–Lomax
Pareto Poisson–Pareto
Pearson’s family of distributions Poisson–Pearson family
truncated normal Poisson-truncated normal
uniform Poisson-uniform
shifted gamma Delaporte
beta with specific parameter values Yule

Literature edit

  • Jan Grandell: Mixed Poisson Processes. Chapman & Hall, London 1997, ISBN 0-412-78700-8 .
  • Tom Britton: Stochastic Epidemic Models with Inference. Springer, 2019, doi:10.1007/978-3-030-30900-8

References edit

  1. ^ Willmot, Gordon E.; Lin, X. Sheldon (2001), "Mixed Poisson distributions", Lundberg Approximations for Compound Distributions with Insurance Applications, Lecture Notes in Statistics, vol. 156, New York, NY: Springer New York, pp. 37–49, doi:10.1007/978-1-4613-0111-0_3, ISBN 978-0-387-95135-5, retrieved 2022-07-08
  2. ^ Willmot, Gord (1986). "Mixed Compound Poisson Distributions". ASTIN Bulletin. 16 (S1): S59–S79. doi:10.1017/S051503610001165X. ISSN 0515-0361.
  3. ^ a b c d Willmot, Gord (2014-08-29). "Mixed Compound Poisson Distributions". Astin Bulletin. 16: 5–7. doi:10.1017/S051503610001165X. S2CID 17737506.
  4. ^ Karlis, Dimitris; Xekalaki, Evdokia (2005). "Mixed Poisson Distributions". International Statistical Review. 73 (1): 35–58. doi:10.1111/j.1751-5823.2005.tb00250.x. ISSN 0306-7734. JSTOR 25472639. S2CID 53637483.