Micro-compounding is the mixing or processing of polymer formulations in the melt on a small scale, typically milliliters. It is popular for research and development because it gives faster, more reliable results with smaller samples and less cost. Its applications include pharmaceutical, biomedical, and nutritional areas.

Design

edit

Micro-compounding is typically performed with a tabletop, twin screw micro-compounder, or micro-extruder with a working volume of 5 or 15 milliliters. With such small volumes, it is difficult to have sufficient mixing in a continuous extruder. Therefore, micro-compounders typically have a batch mode (recirculation) and a conical shape.

The L/D of a continuous twin screw extruder is mimicked in a batch micro-compounder by the recirculation mixing time, which is controlled by a manual valve. With this valve, the recirculation can be interrupted to unload the formulation in either a strand or an injection moulder, a film device or a fiber line. Typical recirculation times are one to three minutes, depending on the ease of dispersive and distributive mixing of the formulation.[citation needed]

Benefits

edit

Micro-compounding can now produce films, fibers, and test samples (rods, rings, tablets) from mixtures as small as 5 ml in less than ten minutes. The small footprint requires less lab space than for a parallel twin screw extruder.[1][2][3][4][5] One micro-extruder, developed to test whether drug delivery enabled improved bioavailability of poorly soluble drugs or the sustained release of active ingredients[clarification needed] show or require sensitive and water destroying invasives.[6][7][8][9][10][11]

References

edit
  1. ^ Qizheng Dou, Xiaomin Zhu, Karin Peter, Dan E. Demco, Martin Möller, Claudiu Melian, J. Sol-Gel Sci Technol (2008) 48: 51-60
  2. ^ Stretz, H.A.; Paul, D.R. (2006). "Properties and morphology of nanocomposites based on styrenic polymers, Part II: Effects of maleic anhydride units". Polymer. 47 (26): 8527–8535. doi:10.1016/j.polymer.2006.10.013.
  3. ^ Ozkoc, Guralp; Bayram, Goknur; Tiesnitsch, Johan (2008). "Microcompounding of organoclay–ABS/PA6 blend-based nanocomposites". Polymer Composites. 29 (4): 345–356. doi:10.1002/pc.20392.
  4. ^ Ozkoc, Guralp; Kemaloglu, Sebnem; Quaedflieg, Martin (2010). "Production of poly(lactic acid)/Organoclay nanocomposite scaffolds by microcompounding and polymer/Particle leaching". Polymer Composites. 31 (4): 674–683. doi:10.1002/pc.20846.
  5. ^ Özkoç, Güralp; Bayram, Göknur; Quaedflieg, Martin (2008). "Effects of microcompounding process parameters on the properties of ABS/Polyamide-6 blends based nanocomposites". Journal of Applied Polymer Science. 107 (5): 3058–3070. doi:10.1002/app.27460.
  6. ^ Markus Thommes, APV Drug Delivery Focus Group Newsletter - 1/2012
  7. ^ Ghebre-Sellassie, Isaac; Ghebre-Selassie, Isaac; Martin, Charles E.; Zhang, Feng; DiNunzio, James; Martin, Charles, eds. (2003-05-14). "Pharmaceutical Extrusion Technology". International Journal of Pharmaceutics. 133 (1–2): 1–271. doi:10.1201/9780203911532. ISBN 978-0-203-91153-2 – via www.sciencedirect.com.
  8. ^ Bodor, Nicholas (February 1984). "Techniques of Solubilization of Drugs". Journal of Pharmaceutical Sciences. Drugs and the Pharmaceutical Sciences Series. 73 (2): 288. doi:10.1002/jps.2600730245. ISSN 0022-3549.
  9. ^ Litvinov, V. M.; Guns, S.; Adriaensens, P.; Scholtens, B. J. R.; Quaedflieg, M. P.; Carleer, R.; Van den Mooter, G. (2012-10-01). "Solid State Solubility of Miconazole in Poly[(ethylene glycol)- g -vinyl alcohol] Using Hot-Melt Extrusion". Molecular Pharmaceutics. 9 (10): 2924–2932. doi:10.1021/mp300280k. ISSN 1543-8384. PMID 22905779.
  10. ^ Sakai, Toshiro (6 November 2012). APV Experts‘ Workshop on Hot Melt Extrusion. {{cite conference}}: Missing or empty |title= (help)
  11. ^ Sakai, Toshiro; Thommes, Markus (2014-01-17). "Investigation into mixing capability and solid dispersion preparation using the DSM Xplore Pharma Micro Extruder". Journal of Pharmacy and Pharmacology. 66 (2): 218–231. doi:10.1111/jphp.12085. ISSN 2042-7158.