Iodate sulfates are mixed anion compounds that contain both iodate and sulfate anions. Iodate sulfates have been investigated as optical second harmonic generators, and for separation of rare earth elements.[1] Related compounds include the iodate selenates[2] and chromate iodates.[3]


Iodate sulfates can be produced from water solutions of iodic acid and sulfate salts.[4]

List

edit
formula name formula

weight

system space group cell Å volume density comments ref
Na7(IO3)(SO4)3 624.01 orthorhombic P212121 a=6.839 b=10.851 c=18.519 Z=4 1374.2 3.016 at 100K; band gap 4.83; SHQ 0.5×KDP; birefringence 0.075 at 1064 nm [5]
Na9(IO3)(SO4)4 Hectorfloresite monoclinic P21/a a = 18.775 b = 6.9356 c = 14.239 β = 108.91° Z = 4 [5][6]
K2SO4·HIO3 350.17 monoclinic P21/n a=7.4215 b=7.1578 c=13.802 β=93.330° Z=4 731.9 3.178 colourless; birefingence 0.14 at 589.3 nm; UV edge 275 nm [7]
K3Na5Mg5(IO3)6(SO4)6(H2O)5 trigonal P3c1
K7.2Na8.8Mg10(IO3)12(SO4)12(H2O)12 Fuenzalidaite trigonal P3c1 a = 9.4643 c = 27.336 2,120.52 colourless; Uniaxial (-) nω = 1.622 nε = 1.615; Birefringence = 0.007 [5][8][9]
Nb2O3(IO3)2(SO4) 679.68 monoclinic P21 a=5.299 b=20.479 c=5.452 β=119.095° Z=2 517.0 4.366 band gap 3.25; SHG 6 × KDP; birefringence 0.22 at 1064 nm; stable below 580 °C [5][10]
Ce(IO3)2(SO4) CISO 585.98 orthorhombic P212121 a=7.5366 b=8.9787 c=11.6121 Z=4 785.78 4.953 yellow; SHG 3.5 × KDP; birefringence 0.259 at 546 nm [11]
Sm(IO3)(SO4) monoclinic P21/c a=9.3148 b=6.8678 c=8.2852 β=104.701° [12]
Sm2(IO3)3(SO4)OH·3H2O triclinic P1 a 7.3858 b 9.6166 c 11.8629 α=66.482° β=76.884° γ=69.101° [12]
Eu(IO3)(SO4) monoclinic P21/c a=9.3083 b=6.8460 c=8.2575 β=104.696° [5][1]
Eu2(IO3)3(SO4)OH·3H2O triclinic P1 a=7.3666 b=9.5817 c=11.8263 α=66.5365° β=76.8591° γ=69.1131° [12]
Dy(IO3)(SO4)(H2O) orthorhombic P212121 a=7.3088 b=9.4824 c=11.7302 α=66.6573° β=76.8745° γ=69.2970° [5]
Dy(IO3)(SO4)(H2O)3 orthorhombic P212121 a=6.682 b=8.791 c=13.632 [1]
Dy2(IO3)3(SO4)OH·3H2O triclinic P1 [12]
Hg2(IO3)2(SO4) monoclinic C2/c a=12.040 b=4.7133 c=15.533 β=102.43° [13]
Hg2(IO3)2(SO4)(H2O) monoclinic C2 a=11.767 b=4.9190 c=7.8076 β=97.10° band gap 3.98 eV; SHG 6 × KDP; dehydrate 250 °C [13]
Bi(IO3)(SO4) 479.94 monoclinic P21/c a=9.4355 b=6.9168 c=8.3374 β=105.168° Z=4 525.17 6.070 band gap 3.91 eV; birefringence 0.087 at 1064 nm; colourless [14]
Bi2O(SO4)(IO3)2 monoclinic P21/n a=7.2391 b=17.907 c=7.7964 β = 109.652° Z =4 [4]
AgBi(SO4)(IO3)2 1525.42 triclinic P1 a=5.5189 b=6.9129 c=11.8527 α=90.598° β=92.151° γ=109.895° Z=1 424.78 5.963 colourless; SHG 3.0 × KDP [15]
CdBi(IO3)(SO4)2 688.40 monoclinic P21/c a=12.777 b=6.8491 c=9.984 β=103.23° Z=4 850.5 5.376 band gap 4.03 eV; birefringence 0.100 at 1064 nm [14]

References

edit
  1. ^ a b c Lu, Huangjie; Guo, Xiaojing; Wang, Yaxing; Diefenbach, Kariem; Chen, Lanhua; Wang, Jian-Qiang; Lin, Jian; Wang, Shuao (2019). "Size-dependent selective crystallization using an inorganic mixed-oxoanion system for lanthanide separation". Dalton Transactions. 48 (34): 12808–12811. doi:10.1039/C9DT02387A. ISSN 1477-9226. PMID 31348473. S2CID 198911627.
  2. ^ Chen, Qian-Qian; Hu, Chun-Li; Li, Bing-Xuan; Mao, Jiang-Gao (2023). "[M(OH) 2 ] 3 (IO 3 )(SeO 4 )·H 2 O (M = Ga and In): metal iodate–selenate nonlinear optical materials with a hexagonal tungsten oxide-type topology". Inorganic Chemistry Frontiers. 10 (10): 3121–3130. doi:10.1039/D3QI00415E. ISSN 2052-1553. S2CID 258123310.
  3. ^ Sullens, Tyler A.; Almond, Philip M.; Byrd, Jessica A.; Beitz, James V.; Bray, Travis H.; Albrecht-Schmitt, Thomas E. (April 2006). "Extended networks, porous sheets, and chiral frameworks. Thorium materials containing mixed geometry anions: Structures and properties of Th(SeO3)(SeO4), Th(IO3)2(SeO4)(H2O)3·H2O, and Th(CrO4)(IO3)2". Journal of Solid State Chemistry. 179 (4): 1192–1201. Bibcode:2006JSSCh.179.1192S. doi:10.1016/j.jssc.2006.01.017.
  4. ^ a b Shi, Long; Mei, Dajiang; Xu, Jingli; Wu, Yuandong (January 2017). "Bi 2 O(XO 4 )(IO 3 ) 2 (X = S, Se, Cr): Three-dimensional frameworks containing [Bi 4 O 2 ] 8+ clusters". Solid State Sciences. 63: 54–61. Bibcode:2017SSSci..63...54S. doi:10.1016/j.solidstatesciences.2016.11.010.
  5. ^ a b c d e f Ding, Mengmeng; Yu, Hongwei; Hu, Zhanggui; Wang, Jiyang; Wu, Yicheng (2021). "Na 7 (IO 3 )(SO 4 ) 3 : the first noncentrosymmetric alkaline-metal iodate-sulfate with isolated [IO 3 ] and [SO 4 ] units". Chemical Communications. 57 (75): 9598–9601. doi:10.1039/D1CC03483A. ISSN 1359-7345. PMID 34546233. S2CID 237584872.
  6. ^ George E. Ericksen; Howard T. Evans; Mary E. Mrose; James J. Mcgee; John W. Marinenko; Judith A. Konnert (1 October 1989). "Mineralogical studies of the nitrate deposits of Chile; VI, Hectorfloresite, Na9(IO3(SO4)4, a new saline mineral". pubs.geoscienceworld.org. Retrieved 2023-09-11.{{cite web}}: CS1 maint: multiple names: authors list (link)
  7. ^ Bai, Zhiyong; Ok, Kang Min (2023). "Dramatically improved optical anisotropy by realizing stereochemically active lone pairs in a sulfate system, K 2 SO 4 ·HIO 3". Inorganic Chemistry Frontiers. 10 (6): 1919–1925. doi:10.1039/D3QI00192J. ISSN 2052-1553. S2CID 257071174.
  8. ^ "Fuenzalidaite". Mindat.org.
  9. ^ "Mineralogical studies of the nitrate deposits of Chile: VII. Two new saline minerals with the composition K6(Na,K)4Na6Mg10(XO4)12(IO3)12·12H2O: Fuenzalidaite (X = S) and carlosruizite (X = Se)". pubs.geoscienceworld.org. Retrieved 2023-09-11.
  10. ^ Tang, Hong-Xin; Zhang, Yu-Xiao; Zhuo, Chao; Fu, Rui-Biao; Lin, Hua; Ma, Zu-Ju; Wu, Xin-Tao (2019-03-18). "A Niobium Oxyiodate Sulfate with a Strong Second-Harmonic-Generation Response Built by Rational Multi-Component Design". Angewandte Chemie. 131 (12): 3864–3868. Bibcode:2019AngCh.131.3864T. doi:10.1002/ange.201813122. ISSN 0044-8249. S2CID 243005250.
  11. ^ Wu, Tianhui; Jiang, Xingxing; Zhang, Yiran; Wang, Zujian; Sha, Hongyuan; Wu, Chao; Lin, Zheshuai; Huang, Zhipeng; Long, Xifa; Humphrey, Mark G.; Zhang, Chi (2021-12-14). "From CeF 2 (SO 4 )·H 2 O to Ce(IO 3 ) 2 (SO 4 ): Defluorinated Homovalent Substitution for Strong Second-Harmonic-Generation Effect and Sufficient Birefringence". Chemistry of Materials. 33 (23): 9317–9325. doi:10.1021/acs.chemmater.1c03053. ISSN 0897-4756. S2CID 244494818.
  12. ^ a b c d Aslani, Ceren Kutahyali; Klepov, Vladislav V.; zur Loye, Hans-Conrad (July 2022). "Hydrothermal synthesis of new mixed-oxoanion materials: Rare earth iodate sulfates Sm(IO3)(SO4) and Ln2(IO3)3(SO4)OH·3H2O (Ln = Sm, Eu, Dy)". Solid State Sciences. 129: 106918. Bibcode:2022SSSci.12906918A. doi:10.1016/j.solidstatesciences.2022.106918.
  13. ^ a b Li, Yi-Lin; Ji, Meng-Ya; Hu, Chun-Li; Chen, Jin; Li, Bing-Xuan; Lin, Yuan; Mao, Jiang-Gao (April 2022). "Explorations of New SHG Materials in Mercury Iodate Sulfate System**". Chemistry – A European Journal. 28 (19): e202200001. doi:10.1002/chem.202200001. ISSN 0947-6539. PMID 35156759. S2CID 246813632.
  14. ^ a b Li, Yilin; Hu, Chunli; Chen, Jin; Mao, Jianggao (2021). "Two bismuth iodate sulfates with enhanced optical anisotropy". Dalton Transactions. 50 (44): 16139–16146. doi:10.1039/D1DT02514G. ISSN 1477-9226. PMID 34677566. S2CID 239456548.
  15. ^ Liu, Hongming; Wu, Qingchen; Liu, Lili; Lin, Zheshuai; Halasyamani, P. Shiv; Chen, Xingguo; Qin, Jingui (2021). "AgBi(SO 4 )(IO 3 ) 2 : aliovalent substitution induces structure dimensional upgrade and second harmonic generation enhancement". Chemical Communications. 57 (30): 3712–3715. doi:10.1039/D0CC07862J. ISSN 1359-7345. PMID 33729224. S2CID 232262974.