In the mathematical study of stochastic processes, a Harris chain is a Markov chain where the chain returns to a particular part of the state space an unbounded number of times.[1] Harris chains are regenerative processes and are named after Theodore Harris. The theory of Harris chains and Harris recurrence is useful for treating Markov chains on general (possibly uncountably infinite) state spaces.

Definition edit

Let   be a Markov chain on a general state space   with stochastic kernel  . The kernel represents a generalized one-step transition probability law, so that   for all states   in   and all measurable sets  . The chain   is a Harris chain[2] if there exists  , and probability measure   with   such that

  1. If  , then   for all  .
  2. If   and   (where   is measurable), then  .

The first part of the definition ensures that the chain returns to some state within   with probability 1, regardless of where it starts. It follows that it visits state   infinitely often (with probability 1). The second part implies that once the Markov chain is in state  , its next-state can be generated with the help of an independent Bernoulli coin flip. To see this, first note that the parameter   must be between 0 and 1 (this can be shown by applying the second part of the definition to the set  ). Now let   be a point in   and suppose  . To choose the next state  , independently flip a biased coin with success probability  . If the coin flip is successful, choose the next state   according to the probability measure  . Else (and if  ), choose the next state   according to the measure   (defined for all measurable subsets  ).

Two random processes   and   that have the same probability law and are Harris chains according to the above definition can be coupled as follows: Suppose that   and  , where   and   are points in  . Using the same coin flip to decide the next-state of both processes, it follows that the next states are the same with probability at least  .

Examples edit

Example 1: Countable state space edit

Let Ω be a countable state space. The kernel K is defined by the one-step conditional transition probabilities P[Xn+1 = y | Xn = x] for x,y ∈ Ω. The measure ρ is a probability mass function on the states, so that ρ(x) ≥ 0 for all x ∈ Ω, and the sum of the ρ(x) probabilities is equal to one. Suppose the above definition is satisfied for a given set A ⊆ Ω and a given parameter ε > 0. Then P[Xn+1 = c | Xn = x] ≥ ερ(c) for all xA and all c ∈ Ω.

Example 2: Chains with continuous densities edit

Let {Xn}, XnRd be a Markov chain with a kernel that is absolutely continuous with respect to Lebesgue measure:

K(x, dy) = K(x, ydy

such that K(x, y) is a continuous function.

Pick (x0y0) such that K(x0y0 ) > 0, and let A and Ω be open sets containing x0 and y0 respectively that are sufficiently small so that K(xy) ≥ ε > 0 on A ×  Ω. Letting ρ(C) = |Ω ∩ C|/|Ω| where |Ω| is the Lebesgue measure of Ω, we have that (2) in the above definition holds. If (1) holds, then {Xn} is a Harris chain.

Reducibility and periodicity edit

In the following  ; i.e.   is the first time after time 0 that the process enters region  . Let   denote the initial distribution of the Markov chain, i.e.  .

Definition: If for all  ,  , then the Harris chain is called recurrent.

Definition: A recurrent Harris chain   is aperiodic if  , such that  ,  

Theorem: Let   be an aperiodic recurrent Harris chain with stationary distribution  . If   then as  ,   where   denotes the total variation for signed measures defined on the same measurable space.

References edit

  1. ^ Asmussen, Søren (2003). "Further Topics in Renewal Theory and Regenerative Processes". Applied Probability and Queues. Stochastic Modelling and Applied Probability. Vol. 51. pp. 186–219. doi:10.1007/0-387-21525-5_7. ISBN 978-0-387-00211-8.
  2. ^ R. Durrett. Probability: Theory and Examples. Thomson, 2005. ISBN 0-534-42441-4.