Ginsparg–Wilson equation

In lattice field theory, the Ginsparg–Wilson equation generalizes chiral symmetry on the lattice in a way that approaches the continuum formulation in the continuum limit. The class of fermions whose Dirac operators satisfy this equation are known as Ginsparg–Wilson fermions, with notable examples being overlap, domain wall and fixed point fermions. They are a means to avoid the fermion doubling problem, widely used for instance in lattice QCD calculations.[1] The equation was discovered by Paul Ginsparg and Kenneth Wilson in 1982,[2] however it was quickly forgotten about since there were no known solutions. It was only in 1997 and 1998 that the first solutions were found in the form of the overlap[3][4] and fixed point fermions,[5] at which point the equation entered prominence.

Ginsparg–Wilson fermions do not contradict the Nielsen–Ninomiya theorem because they explicitly violate chiral symmetry. More precisely, the continuum chiral symmetry relation (where is the massless Dirac operator) is replaced by the Ginsparg–Wilson equation[6][7][8]

which recovers the correct continuum expression as the lattice spacing goes to zero.

In contrast to Wilson fermions, Ginsparg–Wilson fermions do not modify the inverse fermion propagator additively but multiplicatively, thus lifting the unphysical poles at . The exact form of this modification depends on the individual realisation.

References edit

  1. ^ FLAG Working Group; Aoki, S.; et al. (2014). "A.1 Lattice actions". Review of Lattice Results Concerning Low-Energy Particle Physics. Eur. Phys. J. C. Vol. 74. pp. 116–117. arXiv:1310.8555. doi:10.1140/epjc/s10052-014-2890-7. PMC 4410391. PMID 25972762.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. ^ Ginsparg, Paul H. and Wilson, Kenneth G. (1982). "A remnant of chiral symmetry on the lattice". Phys. Rev. D. 25 (10). American Physical Society: 2649–2657. Bibcode:1982PhRvD..25.2649G. doi:10.1103/PhysRevD.25.2649.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ Neuberger, H. (1998). "Exactly massless quarks on the lattice". Phys. Lett. B. 417 (1–2): 141–144. arXiv:hep-lat/9707022. Bibcode:1998PhLB..417..141N. doi:10.1016/S0370-2693(97)01368-3. S2CID 119372020.
  4. ^ Neuberger, H. (1998). "More about exactly massless quarks on the lattice". Phys. Lett. B. 427 (3–4): 353–355. arXiv:hep-lat/9801031. Bibcode:1998PhLB..427..353N. doi:10.1016/S0370-2693(98)00355-4. S2CID 17397528.
  5. ^ Hasenfratz, P. (1998). "Prospects for perfect actions". Nucl. Phys. B Proc. Suppl. 63 (1–3): 53–58. arXiv:hep-lat/9709110. Bibcode:1998NuPhS..63...53H. doi:10.1016/S0920-5632(97)00696-8. S2CID 18134647.
  6. ^ Gattringer, C.; Lang, C.B. (2009). "7 Chiral symmetry on the lattice". Quantum Chromodynamics on the Lattice: An Introductory Presentation. Lecture Notes in Physics 788. Springer. pp. 163–164. doi:10.1007/978-3-642-01850-3. ISBN 978-3642018497.
  7. ^ Rothe, Heinz J. (2005). "4 Fermions on the lattice". Lattice Gauge Theories: An Introduction. World Scientific Lecture Notes in Physics (3 ed.). World Scientific Publishing Company. pp. 73–76. ISBN 978-9814365857.
  8. ^ Chandrasekharan, S. (2004). "An introduction to chiral symmetry on the lattice". Progress in Particle and Nuclear Physics. 53 (2). Elsevier BV: 373–418. arXiv:hep-lat/0405024. Bibcode:2004PrPNP..53..373C. doi:10.1016/j.ppnp.2004.05.003. ISSN 0146-6410. S2CID 17473067.