Given
N
+
1
{\displaystyle N+1}
elements with moduli
E
i
{\displaystyle E_{i}}
, viscosities
η
i
{\displaystyle \eta _{i}}
, and relaxation times
τ
i
=
η
i
E
i
{\displaystyle \tau _{i}={\frac {\eta _{i}}{E_{i}}}}
The general form for the model for solids is given by [citation needed ] :
General Maxwell Solid Model (
1 )
σ
+
{\displaystyle \sigma +}
∑
n
=
1
N
(
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
∏
j
∈
{
i
1
,
.
.
.
,
i
n
}
τ
j
)
)
.
.
.
)
.
.
.
)
∂
n
σ
∂
t
n
{\displaystyle \sum _{n=1}^{N}{\left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\prod _{j\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{j}}}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\sigma }}{\partial {t}^{n}}}}}
=
{\displaystyle =}
E
0
ϵ
+
{\displaystyle E_{0}\epsilon +}
∑
n
=
1
N
(
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
(
E
0
+
∑
j
∈
{
i
1
,
.
.
.
,
i
n
}
E
j
)
(
∏
k
∈
{
i
1
,
.
.
.
,
i
n
}
τ
k
)
)
)
.
.
.
)
.
.
.
)
∂
n
ϵ
∂
t
n
{\displaystyle \sum _{n=1}^{N}{\left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\left({E_{0}+\sum _{j\in \left\{{i_{1},...,i_{n}}\right\}}{E_{j}}}\right)\left({\prod _{k\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{k}}}\right)}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\epsilon }}{\partial {t}^{n}}}}}
This may be more easily understood by showing the model in a slightly more expanded form:
General Maxwell Solid Model (
2 )
σ
+
{\displaystyle \sigma +}
(
∑
i
=
1
N
τ
i
)
∂
σ
∂
t
+
{\displaystyle {\left({\sum _{i=1}^{N}{\tau _{i}}}\right)}{\frac {\partial {\sigma }}{\partial {t}}}+}
(
∑
i
=
1
N
−
1
(
∑
j
=
i
+
1
N
τ
i
τ
j
)
)
∂
2
σ
∂
t
2
{\displaystyle {\left({\sum _{i=1}^{N-1}{\left({\sum _{j=i+1}^{N}{\tau _{i}\tau _{j}}}\right)}}\right)}{\frac {\partial ^{2}{\sigma }}{\partial {t}^{2}}}}
+
.
.
.
+
{\displaystyle +...+}
(
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
∏
j
∈
{
i
1
,
.
.
.
,
i
n
}
τ
j
)
)
.
.
.
)
.
.
.
)
∂
n
σ
∂
t
n
{\displaystyle \left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\prod _{j\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{j}}}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\sigma }}{\partial {t}^{n}}}}
+
.
.
.
+
{\displaystyle +...+}
(
∏
i
=
1
N
τ
i
)
∂
N
σ
∂
t
N
{\displaystyle \left({\prod _{i=1}^{N}{\tau _{i}}}\right){\frac {\partial ^{N}{\sigma }}{\partial {t}^{N}}}}
=
{\displaystyle =}
E
0
ϵ
+
{\displaystyle E_{0}\epsilon +}
(
∑
i
=
1
N
(
E
0
+
E
i
)
τ
i
)
∂
ϵ
∂
t
+
{\displaystyle {\left({\sum _{i=1}^{N}{\left({E_{0}+E_{i}}\right)\tau _{i}}}\right)}{\frac {\partial {\epsilon }}{\partial {t}}}+}
(
∑
i
=
1
N
−
1
(
∑
j
=
i
+
1
N
(
E
0
+
E
i
+
E
j
)
τ
i
τ
j
)
)
∂
2
ϵ
∂
t
2
{\displaystyle {\left({\sum _{i=1}^{N-1}{\left({\sum _{j=i+1}^{N}{\left({E_{0}+E_{i}+E_{j}}\right)\tau _{i}\tau _{j}}}\right)}}\right)}{\frac {\partial ^{2}{\epsilon }}{\partial {t}^{2}}}}
+
.
.
.
+
{\displaystyle +...+}
(
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
(
E
0
+
∑
j
∈
{
i
1
,
.
.
.
,
i
n
}
E
j
)
(
∏
k
∈
{
i
1
,
.
.
.
,
i
n
}
τ
k
)
)
)
.
.
.
)
.
.
.
)
∂
n
ϵ
∂
t
n
{\displaystyle \left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\left({E_{0}+\sum _{j\in \left\{{i_{1},...,i_{n}}\right\}}{E_{j}}}\right)\left({\prod _{k\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{k}}}\right)}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\epsilon }}{\partial {t}^{n}}}}
+
.
.
.
+
{\displaystyle +...+}
(
E
0
+
∑
j
=
1
N
E
j
)
(
∏
i
=
1
N
τ
i
)
∂
N
ϵ
∂
t
N
{\displaystyle \left({E_{0}+\sum _{j=1}^{N}E_{j}}\right)\left({\prod _{i=1}^{N}{\tau _{i}}}\right){\frac {\partial ^{N}{\epsilon }}{\partial {t}^{N}}}}
Following the above model with
N
+
1
=
2
{\displaystyle N+1=2}
elements yields the standard linear solid model :
Standard Linear Solid Model (
3 )
σ
+
τ
1
∂
σ
∂
t
=
E
0
ϵ
+
τ
1
(
E
0
+
E
1
)
∂
ϵ
∂
t
{\displaystyle \sigma +\tau _{1}{\frac {\partial {\sigma }}{\partial {t}}}=E_{0}\epsilon +\tau _{1}\left({E_{0}+E_{1}}\right){\frac {\partial {\epsilon }}{\partial {t}}}}
Given
N
+
1
{\displaystyle N+1}
elements with moduli
E
i
{\displaystyle E_{i}}
, viscosities
η
i
{\displaystyle \eta _{i}}
, and relaxation times
τ
i
=
η
i
E
i
{\displaystyle \tau _{i}={\frac {\eta _{i}}{E_{i}}}}
The general form for the model for fluids is given by:
General Maxwell Fluid Model (
4 )
σ
+
{\displaystyle \sigma +}
∑
n
=
1
N
(
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
∏
j
∈
{
i
1
,
.
.
.
,
i
n
}
τ
j
)
)
.
.
.
)
.
.
.
)
∂
n
σ
∂
t
n
{\displaystyle \sum _{n=1}^{N}{\left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\prod _{j\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{j}}}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\sigma }}{\partial {t}^{n}}}}}
=
{\displaystyle =}
∑
n
=
1
N
(
η
0
+
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
(
∑
j
∈
{
i
1
,
.
.
.
,
i
n
}
E
j
)
(
∏
k
∈
{
i
1
,
.
.
.
,
i
n
}
τ
k
)
)
)
.
.
.
)
.
.
.
)
∂
n
ϵ
∂
t
n
{\displaystyle \sum _{n=1}^{N}{\left({\eta _{0}+\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\left({\sum _{j\in \left\{{i_{1},...,i_{n}}\right\}}{E_{j}}}\right)\left({\prod _{k\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{k}}}\right)}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\epsilon }}{\partial {t}^{n}}}}}
This may be more easily understood by showing the model in a slightly more expanded form:
General Maxwell Fluid Model (
5 )
σ
+
{\displaystyle \sigma +}
(
∑
i
=
1
N
τ
i
)
∂
σ
∂
t
+
{\displaystyle {\left({\sum _{i=1}^{N}{\tau _{i}}}\right)}{\frac {\partial {\sigma }}{\partial {t}}}+}
(
∑
i
=
1
N
−
1
(
∑
j
=
i
+
1
N
τ
i
τ
j
)
)
∂
2
σ
∂
t
2
{\displaystyle {\left({\sum _{i=1}^{N-1}{\left({\sum _{j=i+1}^{N}{\tau _{i}\tau _{j}}}\right)}}\right)}{\frac {\partial ^{2}{\sigma }}{\partial {t}^{2}}}}
+
.
.
.
+
{\displaystyle +...+}
(
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
∏
j
∈
{
i
1
,
.
.
.
,
i
n
}
τ
j
)
)
.
.
.
)
.
.
.
)
∂
n
σ
∂
t
n
{\displaystyle \left({\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\prod _{j\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{j}}}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\sigma }}{\partial {t}^{n}}}}
+
.
.
.
+
{\displaystyle +...+}
(
∏
i
=
1
N
τ
i
)
∂
N
σ
∂
t
N
{\displaystyle \left({\prod _{i=1}^{N}{\tau _{i}}}\right){\frac {\partial ^{N}{\sigma }}{\partial {t}^{N}}}}
=
{\displaystyle =}
(
η
0
+
∑
i
=
1
N
E
i
τ
i
)
∂
ϵ
∂
t
+
{\displaystyle {\left({\eta _{0}+\sum _{i=1}^{N}{E_{i}\tau _{i}}}\right)}{\frac {\partial {\epsilon }}{\partial {t}}}+}
(
η
0
+
∑
i
=
1
N
−
1
(
∑
j
=
i
+
1
N
(
E
i
+
E
j
)
τ
i
τ
j
)
)
∂
2
ϵ
∂
t
2
{\displaystyle {\left({\eta _{0}+\sum _{i=1}^{N-1}{\left({\sum _{j=i+1}^{N}{\left({E_{i}+E_{j}}\right)\tau _{i}\tau _{j}}}\right)}}\right)}{\frac {\partial ^{2}{\epsilon }}{\partial {t}^{2}}}}
+
.
.
.
+
{\displaystyle +...+}
(
η
0
+
∑
i
1
=
1
N
−
n
+
1
.
.
.
(
∑
i
a
=
i
a
−
1
+
1
N
−
(
n
−
a
)
+
1
.
.
.
(
∑
i
n
=
i
n
−
1
+
1
N
(
(
∑
j
∈
{
i
1
,
.
.
.
,
i
n
}
E
j
)
(
∏
k
∈
{
i
1
,
.
.
.
,
i
n
}
τ
k
)
)
)
.
.
.
)
.
.
.
)
∂
n
ϵ
∂
t
n
{\displaystyle \left({\eta _{0}+\sum _{i_{1}=1}^{N-n+1}{...\left({\sum _{i_{a}=i_{a-1}+1}^{N-\left({n-a}\right)+1}{...\left({\sum _{i_{n}=i_{n-1}+1}^{N}{\left({\left({\sum _{j\in \left\{{i_{1},...,i_{n}}\right\}}{E_{j}}}\right)\left({\prod _{k\in \left\{{i_{1},...,i_{n}}\right\}}{\tau _{k}}}\right)}\right)}}\right)...}}\right)...}}\right){\frac {\partial ^{n}{\epsilon }}{\partial {t}^{n}}}}
+
.
.
.
+
{\displaystyle +...+}
(
η
0
+
(
∑
j
=
1
N
E
j
)
(
∏
i
=
1
N
τ
i
)
)
∂
N
ϵ
∂
t
N
{\displaystyle \left({\eta _{0}+\left({\sum _{j=1}^{N}E_{j}}\right)\left({\prod _{i=1}^{N}{\tau _{i}}}\right)}\right){\frac {\partial ^{N}{\epsilon }}{\partial {t}^{N}}}}
Example: three parameter fluid
edit
The analogous model to the standard linear solid model is the three parameter fluid, also known as the Jeffreys model:[ 5]
Three Parameter Maxwell Fluid Model (
6 )
σ
+
τ
1
∂
σ
∂
t
=
(
η
0
+
τ
1
E
1
∂
∂
t
)
∂
ϵ
∂
t
{\displaystyle \sigma +\tau _{1}{\frac {\partial {\sigma }}{\partial {t}}}=\left({\eta _{0}+\tau _{1}E_{1}{\frac {\partial }{\partial t}}}\right){\frac {\partial {\epsilon }}{\partial {t}}}}