In statistics, Fieller's theorem allows the calculation of a confidence interval for the ratio of two means.

Approximate confidence interval edit

Variables a and b may be measured in different units, so there is no way to directly combine the standard errors as they may also be in different units. The most complete discussion of this is given by Fieller (1954).[1]

Fieller showed that if a and b are (possibly correlated) means of two samples with expectations   and  , and variances   and   and covariance  , and if   are all known, then a (1 − α) confidence interval (mLmU) for   is given by

 

where

 

Here   is an unbiased estimator of   based on r degrees of freedom, and   is the  -level deviate from the Student's t-distribution based on r degrees of freedom.

Three features of this formula are important in this context:

a) The expression inside the square root has to be positive, or else the resulting interval will be imaginary.

b) When g is very close to 1, the confidence interval is infinite.

c) When g is greater than 1, the overall divisor outside the square brackets is negative and the confidence interval is exclusive.

Other methods edit

One problem is that, when g is not small, the confidence interval can blow up when using Fieller's theorem. Andy Grieve has provided a Bayesian solution where the CIs are still sensible, albeit wide.[2] Bootstrapping provides another alternative that does not require the assumption of normality.[3]

History edit

Edgar C. Fieller (1907–1960) first started working on this problem while in Karl Pearson's group at University College London, where he was employed for five years after graduating in Mathematics from King's College, Cambridge. He then worked for the Boots Pure Drug Company as a statistician and operational researcher before becoming deputy head of operational research at RAF Fighter Command during the Second World War, after which he was appointed the first head of the Statistics Section at the National Physical Laboratory.[4]

See also edit

Notes edit

  1. ^ Fieller, EC. (1954). "Some problems in interval estimation". Journal of the Royal Statistical Society, Series B. 16 (2): 175–185. JSTOR 2984043.
  2. ^ O'Hagan A, Stevens JW, Montmartin J (2000). "Inference for the cost-effectiveness acceptability curve and cost-effectiveness ratio". Pharmacoeconomics. 17 (4): 339–49. doi:10.2165/00019053-200017040-00004. PMID 10947489. S2CID 35930223.
  3. ^ Campbell, M. K.; Torgerson, D. J. (1999). "Bootstrapping: estimating confidence intervals for cost-effectiveness ratios". QJM: An International Journal of Medicine. 92 (3): 177–182. doi:10.1093/qjmed/92.3.177. PMID 10326078.
  4. ^ Irwin, J. O.; Rest, E. D. Van (1961). "Edgar Charles Fieller, 1907-1960". Journal of the Royal Statistical Society, Series A. 124 (2). Blackwell Publishing: 275–277. JSTOR 2984155.

Further reading edit