Ceyuan haijing (simplified Chinese: 测圆海镜; traditional Chinese: 測圓海鏡; pinyin: cè yuán hǎi jìng; lit. 'sea mirror of circle measurements') is a treatise on solving geometry problems with the algebra of Tian yuan shu written by the mathematician Li Zhi in 1248 in the time of the Mongol Empire. It is a collection of 692 formula and 170 problems, all derived from the same master diagram of a round town inscribed in a right triangle and a square. They often involve two people who walk on straight lines until they can see each other, meet or reach a tree or pagoda in a certain spot. It is an algebraic geometry book, the purpose of book is to study intricated geometrical relations by algebra.

The master figure in Sea mirror of circle measurements, that all the problems use. It shows a round town, inscribed in a right triangle and a square.

Majority of the geometry problems are solved by polynomial equations, which are represented using a method called tian yuan shu, "coefficient array method" or literally "method of the celestial unknown". Li Zhi is the earliest extant source of this method, though it was known before him in some form. It is a positional system of rod numerals to represent polynomial equations.

Ceyuan haijing was first introduced to the west by the British Protestant Christian missionary to China, Alexander Wylie in his book Notes on Chinese Literature, 1902. He wrote:

The first page has a diagram of a circle contained in a triangle, which is dissected into 15 figures; the definition and ratios of the several parts are then given, and there are followed by 170 problems, in which the principle of the new science are seen to advantage. There is an exposition and scholia throughout by the author.[1]

This treatise consists of 12 volumes.

Volume 1 edit

 
Reconstructed Diagram of circular city in alphabets

Diagram of a Round Town edit

The monography begins with a master diagram called the Diagram of Round Town(圆城图式). It shows a circle inscribed in a right angle triangle and four horizontal lines, four vertical lines.

  • TLQ, the large right angle triangle, with horizontal line LQ, vertical line TQ and hypotenuse TL

C: Center of circle:

  • NCS: A vertical line through C, intersect the circle and line LQ at N(南north side of city wall), intersects south side of circle at S(南).
  • NCSR, Extension of line NCS to intersect hypotenuse TL at R(日)
  • WCE: a horizontal line passing center C, intersects circle and line TQ at W(西, west side of city wall) and circle at E (东, east side of city wall).
  • WCEB:extension of line WCE to intersect hypotenuse at B(川)
  • KSYV: a horizontal tangent at S, intersects line TQ at K(坤), hypotenuse TL at Y(月).
  • HEMV: vertical tangent of circle at point E, intersects line LQ at H, hypotenuse at M(山, mountain)
  • HSYY, KSYV, HNQ, QSK form a square, with inscribed circle C.
  • Line YS, vertical line from Y intersects line LQ at S(泉, spring)
  • Line BJ, vertical line from point B, intersects line LQ at J(夕, night)
  • RD, a horizontal line from R, intersects line TQ at D(旦, day)

The North, South, East and West direction in Li Zhi's diagram are opposite to our present convention.

Triangles and their sides edit

There are a total of fifteen right angle triangles formed by the intersection between triangle TLQ, the four horizontal lines, and four vertical lines.

The names of these right angle triangles and their sides are summarized in the following table

Number Name Vertices Hypotenuse0c Vertical0b Horizontal0a
1 通 TONG 天地乾   通弦(TL天地) 通股(TQ天乾) 通勾(LQ地乾)
2 边 BIAN 天西川   边弦(TB天川) 边股(TW天西) 边勾(WB西川)
3 底 DI 日地北   底弦(RL日地) 底股(RN日北) 底勾(LB地北)
4 黄广 HUANGGUANG 天山金   黄广弦(TM天山) 黄广股(TJ天金) 黄广勾(MJ山金)
5 黄长 HUANGCHANG 月地泉   黄长弦(YL月地) 黄长股(YS月泉) 黄长勾(LS地泉)
6 上高 SHANGGAO 天日旦   上高弦(TR天日) 上高股(TD天旦) 上高勾(RD日旦)
7 下高 XIAGAO 日山朱   下高弦(RM日山) 下高股(RZ日朱) 下高勾(MZ山朱)
8 上平 SHANGPING 月川青   上平弦(YS月川) 上平股(YG月青) 上平勾(SG川青)
9 下平 XIAPING 川地夕   下平弦(BL川地) 下平股(BJ川夕) 下平勾(LJ地夕)
10 大差 DACHA 天月坤   大差弦(TY天月) 大差股(TK天坤) 大差勾(YK月坤)
11 小差 XIAOCHA 山地艮   小差弦(ML山地) 小差股(MH山艮) 小差勾(LH地艮)
12 皇极 HUANGJI 日川心   皇极弦(RS日川) 皇极股(RC日心) 皇极勾(SC川心)
13 太虚 TAIXU 月山泛   太虚弦(YM月山) 太虚股(YF月泛) 太虚勾(MF山泛)
14 明 MING 日月南   明弦(RY日月) 明股(RS日南) 明勾(YS月南)
15 叀 ZHUAN 山川东   叀弦(MS山川) 叀股(ME山东) 叀勾(SE川东)

In problems from Vol 2 to Vol 12, the names of these triangles are used in very terse terms. For instance

"明差","MING difference" refers to the "difference between the vertical side and horizontal side of MING triangle.
"叀差","ZHUANG difference" refers to the "difference between the vertical side and horizontal side of ZHUANG triangle."
"明差叀差并" means "the sum of MING difference and ZHUAN difference" 

Length of Line Segments edit

This section (今问正数) lists the length of line segments, the sum and difference and their combinations in the diagram of round town, given that the radius r of inscribe circle is   paces  , .

The 13 segments of ith triangle (i=1 to 15) are:

  1. Hypoteneuse  
  2. Horizontal  
  3. Vertical  
  4. :勾股和 :sum of horizontal and vertical  
  5. :勾股校: difference of vertical and horizontal  
  6. :勾弦和: sum of horizontal and hypotenuse  
  7. :勾弦校: difference of hypotenuse and horizontal  
  8. :股弦和: sum of hypotenuse and vertical  
  9. :股弦校: difference of hypotenuse and vertical  
  10. :弦校和: sum of the difference and the hypotenuse  
  11. :弦校校: difference of the hypotenuse and the difference  
  12. :弦和和: sum the hypotenuse and the sum of vertical and horizontal  
  13. :弦和校: difference of the sum of horizontal and vertical with the hypotenuse  

Among the fifteen right angle triangles, there are two sets of identical triangles:

 = ,
 = 

that is

 ;
 ;
 ;
 ;
 ;
 ;

Segment numbers edit

There are 15 x 13 =195 terms, their values are shown in Table 1:[2]

 
Segment Table 1

Definitions and formula edit

Miscellaneous formula edit

[3]

  1.  =  * 
  2.  =   
  3.  =   
  4.  =   
  5.  =  
  6.  =  
  7.  =  
  8.  =   
  9.  =  
  10.  =  = 

The Five Sums and The Five Differences edit

  1.  [4]
  2.  
  3.  
  4.  
  5.  
  6.  
  7.  
  8.  
  9.  
  10.  
  11.  
  12.  
  13.  
  14.  
  •  
  •  

Li Zhi derived a total of 692 formula in Ceyuan haijing. Eight of the formula are incorrect, the rest are all correct[5]

From vol 2 to vol 12, there are 170 problems, each problem utilizing a selected few from these formula to form 2nd order to 6th order polynomial equations. As a matter of fact, there are 21 problems yielding third order polynomial equation, 13 problem yielding 4th order polynomial equation and one problem yielding 6th order polynomial[6]

Volume 2 edit

This volume begins with a general hypothesis[7]

Suppose there is a round town, with unknown diameter. This town has four gates, there are two WE direction roads and two NS direction roads outside the gates forming a square surrounding the round town. The NW corner of the square is point Q, the NE corner is point H, the SE corner is point V, the SW corner is K. All the various survey problems are described in this volume and the following volumes.

All subsequent 170 problems are about given several segments, or their sum or difference, to find the radius or diameter of the round town. All problems follow more or less the same format; it begins with a Question, followed by description of algorithm, occasionally followed by step by step description of the procedure.

Nine types of inscribed circle

The first ten problems were solved without the use of Tian yuan shu. These problems are related to various types of inscribed circle.

Question 1
Two men A and B start from corner Q. A walks eastward 320 paces and stands still. B walks southward 600 paces and see B. What is the diameter of the circular city ?
Answer: the diameter of the round town is 240 paces.
This is inscribed circle problem associated with  
Algorithm: 
 
Question 2
Two men A and B start from West gate. B walks eastward 256 paces, A walks south 480 paces and sees B. What is the diameter of the town ?
Answer 240 paces
This is inscribed circle problem associated with  
From Table 1, 256 =  ; 480 = 
Algorithm:
 
 
Question 3
inscribed circle problem associated with  

 

Question 4:inscribed circle problem associated with  

 

Question 5:inscribed circle problem associated with  

 

Question 6

 

Question 7

 

Question 8

 

Question 9

 

Question 10

 

Tian yuan shu edit

 
Ciyuan haijing vol II Problem 14 detail procedure (草曰)
From problem 14 onwards, Li Zhi introduced "Tian yuan one" as unknown variable, and set up two expressions according to Section Definition and formula, then equate these two tian yuan shu expressions. He then solved the problem and obtained the answer.
Question 14:"Suppose a man walking out from West gate and heading south for 480 paces and encountered a tree. He then walked out from the North gate heading east for 200 paces and saw the same tree. What is the radius of the round own?"
Algorithm: Set up the radius as Tian yuan one, place the counting rods representing southward 480 paces on the floor, subtract the tian yuan radius to obtain

 

 
   

Then subtract tian yuan from eastward paces 200 to obtain:

 

 
   
multiply these two expressions to get: 
 
   
     
 
 

that is 

thus: 

 
   
     

Solve the equation and obtain  

Volume 3 edit

17 problems associated with segment  i.e TW in  [8]

The   pairs with  ,  pairs with   and   pairs with   in problems with same number of volume 4. In other words, for example, change   of problem 2 in vol 3 into   turns it into problem 2 of Vol 4.[9]

Problem # GIVEN x Equation
1    direct calculation without tian yuan
2    d  
3    r  
4    d  
5    d  
6    r  
7    r  
8    r  
9    r  
10    r  
11    r  
12       
13       
14     
15    r  
16    calculate with formula for inscribed circle
17    Calculate with formula forinscribed circle

Volume 4 edit

17 problems, given  and a second segment, find diameter of circular city.[10]

Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
second line segment                                  

Volume 5 edit

18 problems, given [10]

Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
second line segment                                    

Volume 6 edit

18 problems.

Q1-11,13-19 given ,and a second line segment, find diameter d.[10]
Q12:given  and another line segment, find diameter d.
Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Given                                    
Second line segment                                    

Volume 7 edit

18 problems, given two line segments find the diameter of round town[11]

Q Given
1   
2   
3   
4   
5   
6   
7   
8   
9   
10   
11   
12   
13   
14   
15   
16   
17   
18   

Volume 8 edit

17 problems, given three to eight segments or their sum or difference, find diameter of round city.[12]

Q Given
1    
2    
3   
4   
5   
6   
7   
8   
9   
10   
11    
12   
13    
14   
15   
16   

Problem 14 edit

Given the sum of GAO difference and MING difference is 161 paces and the sum of MING difference and ZHUAN difference is 77 paces. What is the diameter of the round city?
Answer: 120 paces.

Algorithm:[13]

Given

 
 

:Add these two items, and divide by 2; according to #Definitions and formula, this equals to HUANGJI difference:

   
   
Let Tian yuan one as the horizontal of SHANGPING (SG):
 
  = 
  (#Definition and formula)
Since   (Definition and formula)
 
 
 
  
 (diameter of round town),
 
Now, multiply the length of RZ by  
 
multiply it with the square of RS:
   
equate the expressions for the two  
thus
  
We obtain:

 

solve it and we obtain  ;

This matches the horizontal of SHANGPING 8th triangle in #Segment numbers.[14]

Volume 9 edit

Part I
Problems given
1   
2   
3   
4   
Part II
Problems given
1    
2    
3    
4    
5    
6    
7    
8    

Volume 10 edit

8 problems[15]

Problem Given
1   
2   
3   
4   
5   
6   
7   
8   

Volume 11 edit

:Miscellaneous 18 problems:[16]

Q GIVEN
1   
2   
3   
4   
5   
6   
7   
8   
9   
10   
11   
12   
13    
14   
15   
16   
17 From the book Dongyuan jiurong
18 From Dongyuan jiurong

Volume 12 edit

14 problems on fractions[17]

Problem given
1   =   
2   =   
3   
4   
5   
6    
7    
8    
9   
10   
11    
12    
13    , 
14      

Research edit

In 1913, French mathematician L. van Hoe wrote an article about Ceyuan haijing. In 1982, K. Chemla Ph.D. thesis Etude du Livre Reflects des Mesuers du Cercle sur la mer de Li Ye. 1983, University of Singapore Mathematics Professor Lam Lay Yong: Chinese Polynomial Equations in the Thirteenth Century。

Footnotes edit

  1. ^ Alexander Wylie, Notes on Chinese Literature, Shanghai, p116, reprinted by Kessinger Publishing
  2. ^ Compiled from Kong Guoping p 62-66
  3. ^ Bai Shangshu p24-25.
  4. ^ Wu Wenjun Chapter II p80
  5. ^ Bai Shangshu, p3, Preface
  6. ^ Wu Wenjun, p87
  7. ^ Bai Shangshou, p153-154
  8. ^ Li Yan p75-88
  9. ^ Martzloff, p147
  10. ^ a b c Li Yan p88-101
  11. ^ Kong Guoping p169-184
  12. ^ Kong Guoping p192-208
  13. ^ Bai Shangshu, p562-566
  14. ^ Footnote:In Vol 8 problem 14, Li Zhi stop short at x=64. However the answer is evident, as from No 8 formular in #Miscellaneous formula:  , and from #Length of Line Segments , thus  , radius of round town can be readily obtain. As a matter of fact, problem 6 of vol 11 is just such a question of given  and , to find the radius of the round town.
  15. ^ Kong Guoping p220-224
  16. ^ Kong Guoping p234-248
  17. ^ P255-263

References edit

  • Jean-Claude Martzloff, A History of Chinese Mathematics, Springer 1997 ISBN 3-540-33782-2
  • Kong Guoping, Guide to Ceyuan haijing, Hubei Education Press 1966 孔国平. 《测圆海镜今导读》 《今问正数》 湖北教育出版社. 1995
  • Bai Shangshu: A Modern Chinese Translation of Li Yeh Ceyuan haijing. Shandong Education Press 1985李冶 著 白尚恕 译 钟善基 校. 《测圆海镜今译》 山东教育出版社. 1985
  • Wu Wenjun The Grand Series of History of Chinese Mathematics Vol 6 吴文俊主编 《中国数学史大系》 第六卷
  • Li Yan, A Historic Study of Ceyuan haijing, collected works of Li Yan and Qian Baocong vol 8《李俨.钱宝琮科学史全集》卷8,李俨《测圆海镜研究历程考》