The Caballos Formation (Spanish: Formación Caballos, KI) is a geological formation of the Upper Magdalena Valley (VSM), Caguán-Putumayo Basin, Central and Eastern Ranges of the Colombian Andes. The sandstone and shale formation dates to the Middle Cretaceous period; Aptian to Albian epochs and has a maximum thickness of 411 metres (1,348 ft).

Caballos Formation
Stratigraphic range: Aptian-Albian
~120–100 Ma
TypeGeological formation
UnderliesHondita Formation
OverliesYaví & Saldaña Formations
Thicknessup to 411 m (1,348 ft)
Lithology
PrimarySandstone, shale, siltstone
OtherLimestone, coal
Location
Coordinates3°49′18.9″N 75°21′22.4″W / 3.821917°N 75.356222°W / 3.821917; -75.356222
RegionCaquetá, Huila, Putumayo & Tolima Departments
Country Colombia
ExtentVSM & Caguán-Putumayo Basin
Central & Eastern Ranges, Andes
Type section
Named forCerro Caballos
Named byCorrigan
LocationOlaya Herrera
Year defined1967
Coordinates3°49′18.9″N 75°21′22.4″W / 3.821917°N 75.356222°W / 3.821917; -75.356222
Approximate paleocoordinates2°54′S 47°24′W / 2.9°S 47.4°W / -2.9; -47.4
RegionTolima
Country Colombia
Thickness at type section411 m (1,348 ft)

Paleogeography of Northern South America
105 Ma, by Ron Blakey

Etymology edit

The formation was defined and named in 1967 by Corrigan after Cerro Caballos, to the west of Olaya Herrera, Tolima.[1]

Description edit

Lithologies edit

The Caballos Formation has a maximum thickness of 411 metres (1,348 ft) in the Quebrada Bambucá and is characterized by a lower sequence of fine to coarse sandstones, of lithic arenite, quartz arenite and feldspar arenite composition, a middle section of fossiliferous black shales and siltstones, intercalated by micritic limestones and coals and very fine sandstones. The upper part of the formation contains conglomerates and glauconitic sandstones.[1]

Stratigraphy and depositional environment edit

The Caballos Formation in some parts concordantly overlies the Yaví Formation and in other parts rests unconformably on the Saldaña Formation and Ibagué Batholith.[2] The formation is overlain by the Hondita Formation. The age has been estimated to be Aptian to Albian. Stratigraphically, the formation is time equivalent with the Une, Aguardiente, Simijaca, El Peñón, Capotes, Tablazo, Tibú-Mercedes and Pacho Formations.[3] The formation has been deposited in a fluvial to estuarine and shallow marine environment.[4]

The Caballos Formation is a source, reservoir and seal rock in the Upper Magdalena Valley,[5][6] and a source and reservoir rock in the Caguán-Putumayo Basin.[7][8] The Orito and Moqueta Fields of the latter basin produce from Caballos reservoirs.

Fossil content edit

The formation has provided fossils of Heminautilus etheringtoni,[9] Araucarites sp., Brachyphyllum sp., Cladophlebis sp., and Weichselia sp.,[10] as well as many types of pollen.[11]

Outcrops edit

 
 
Type locality of the Caballos Formation in Tolima

The Caballos Formation is apart from its type locality, found in Huila, Tolima and Putumayo Departments.

Regional correlations edit

Stratigraphy of the Llanos Basin and surrounding provinces
Ma Age Paleomap Regional events Catatumbo Cordillera proximal Llanos distal Llanos Putumayo VSM Environments Maximum thickness Petroleum geology Notes
0.01 Holocene
 
Holocene volcanism
Seismic activity
alluvium Overburden
1 Pleistocene
 
Pleistocene volcanism
Andean orogeny 3
Glaciations
Guayabo Soatá
Sabana
Necesidad Guayabo Gigante
Alluvial to fluvial (Guayabo) 550 m (1,800 ft)
(Guayabo)
[12][13][14][15]
2.6 Pliocene
 
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3 Messinian Andean orogeny 3
Foreland
Marichuela Caimán Honda [14][16]
13.5 Langhian Regional flooding León hiatus Caja León Lacustrine (León) 400 m (1,300 ft)
(León)
Seal [15][17]
16.2 Burdigalian Miocene inundations
Andean orogeny 2
C1 Carbonera C1 Ospina Proximal fluvio-deltaic (C1) 850 m (2,790 ft)
(Carbonera)
Reservoir [16][15]
17.3 C2 Carbonera C2 Distal lacustrine-deltaic (C2) Seal
19 C3 Carbonera C3 Proximal fluvio-deltaic (C3) Reservoir
21 Early Miocene Pebas wetlands C4 Carbonera C4 Barzalosa Distal fluvio-deltaic (C4) Seal
23 Late Oligocene
 
Andean orogeny 1
Foredeep
C5 Carbonera C5 Orito Proximal fluvio-deltaic (C5) Reservoir [13][16]
25 C6 Carbonera C6 Distal fluvio-lacustrine (C6) Seal
28 Early Oligocene C7 C7 Pepino Gualanday Proximal deltaic-marine (C7) Reservoir [13][16][18]
32 Oligo-Eocene C8 Usme C8 onlap Marine-deltaic (C8) Seal
Source
[18]
35 Late Eocene
 
Mirador Mirador Coastal (Mirador) 240 m (790 ft)
(Mirador)
Reservoir [15][19]
40 Middle Eocene Regadera hiatus
45
50 Early Eocene
 
Socha Los Cuervos Deltaic (Los Cuervos) 260 m (850 ft)
(Los Cuervos)
Seal
Source
[15][19]
55 Late Paleocene PETM
2000 ppm CO2
Los Cuervos Bogotá Gualanday
60 Early Paleocene SALMA Barco Guaduas Barco Rumiyaco Fluvial (Barco) 225 m (738 ft)
(Barco)
Reservoir [12][13][16][15][20]
65 Maastrichtian
 
KT extinction Catatumbo Guadalupe Monserrate Deltaic-fluvial (Guadalupe) 750 m (2,460 ft)
(Guadalupe)
Reservoir [12][15]
72 Campanian End of rifting Colón-Mito Juan [15][21]
83 Santonian Villeta/Güagüaquí
86 Coniacian
89 Turonian Cenomanian-Turonian anoxic event La Luna Chipaque Gachetá hiatus Restricted marine (all) 500 m (1,600 ft)
(Gachetá)
Source [12][15][22]
93 Cenomanian
 
Rift 2
100 Albian Une Une Caballos Deltaic (Une) 500 m (1,600 ft)
(Une)
Reservoir [16][22]
113 Aptian
 
Capacho Fómeque Motema Yaví Open marine (Fómeque) 800 m (2,600 ft)
(Fómeque)
Source (Fóm) [13][15][23]
125 Barremian High biodiversity Aguardiente Paja Shallow to open marine (Paja) 940 m (3,080 ft)
(Paja)
Reservoir [12]
129 Hauterivian
 
Rift 1 Tibú-
Mercedes
Las Juntas hiatus Deltaic (Las Juntas) 910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun) [12]
133 Valanginian Río Negro Cáqueza
Macanal
Rosablanca
Restricted marine (Macanal) 2,935 m (9,629 ft)
(Macanal)
Source (Mac) [13][24]
140 Berriasian Girón
145 Tithonian Break-up of Pangea Jordán Arcabuco Buenavista
Saldaña Alluvial, fluvial (Buenavista) 110 m (360 ft)
(Buenavista)
"Jurassic" [16][25]
150 Early-Mid Jurassic
 
Passive margin 2 La Quinta
Noreán
hiatus Coastal tuff (La Quinta) 100 m (330 ft)
(La Quinta)
[26]
201 Late Triassic
 
Mucuchachi Payandé [16]
235 Early Triassic
 
Pangea hiatus "Paleozoic"
250 Permian
 
300 Late Carboniferous
 
Famatinian orogeny Cerro Neiva
()
[27]
340 Early Carboniferous Fossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche) 900 m (3,000 ft)
(Cuche)
360 Late Devonian
 
Passive margin 1 Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones) 2,400 m (7,900 ft)
(Farallones)
[24][28][29][30][31]
390 Early Devonian
 
High biodiversity Floresta
(387-400)
Shallow marine (Floresta) 600 m (2,000 ft)
(Floresta)
410 Late Silurian Silurian mystery
425 Early Silurian hiatus
440 Late Ordovician
 
Rich fauna in Bolivia San Pedro
(450-490)
Duda
()
470 Early Ordovician First fossils Busbanzá
(>470±22)
Guape
()
Río Nevado
()
[32][33][34]
488 Late Cambrian
 
Regional intrusions Chicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[35][36]
515 Early Cambrian Cambrian explosion [34][37]
542 Ediacaran
 
Break-up of Rodinia pre-Quetame post-Parguaza El Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement [38][39]
600 Neoproterozoic Cariri Velhos orogeny Bucaramanga
(600-1400)
pre-Guaviare [35]
800
 
Snowball Earth [40]
1000 Mesoproterozoic
 
Sunsás orogeny Ariarí
(1000)
La Urraca
(1030-1100)
[41][42][43][44]
1300 Rondônia-Juruá orogeny pre-Ariarí Parguaza
(1300-1400)
Garzón
(1180-1550)
[45]
1400
 
pre-Bucaramanga [46]
1600 Paleoproterozoic Maimachi
(1500-1700)
pre-Garzón [47]
1800
 
Tapajós orogeny Mitú
(1800)
[45][47]
1950 Transamazonic orogeny pre-Mitú [45]
2200 Columbia
2530 Archean
 
Carajas-Imataca orogeny [45]
3100 Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]


See also edit

Notes edit

  1. ^ based on Duarte et al. (2019)[48], García González et al. (2009),[49] and geological report of Villavicencio[50]
  2. ^ based on Duarte et al. (2019)[48] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[51]

References edit

  1. ^ a b Velandia et al., 2001, p.53
  2. ^ Velandia et al., 2001, p.34
  3. ^ Velandia et al., 2001, p.54
  4. ^ Villamil, 2012, p.166
  5. ^ ANH, 2007, p.84
  6. ^ García González et al., 2009, p.83
  7. ^ ANH, 2007, p.57
  8. ^ García González et al., 2009, p.16
  9. ^ Badouin et al., 2016, p.87
  10. ^ Monje et al., 2016, p.38
  11. ^ Los Mangos at Fossilworks.org
  12. ^ a b c d e f García González et al., 2009, p.27
  13. ^ a b c d e f García González et al., 2009, p.50
  14. ^ a b García González et al., 2009, p.85
  15. ^ a b c d e f g h i j Barrero et al., 2007, p.60
  16. ^ a b c d e f g h Barrero et al., 2007, p.58
  17. ^ Plancha 111, 2001, p.29
  18. ^ a b Plancha 177, 2015, p.39
  19. ^ a b Plancha 111, 2001, p.26
  20. ^ Plancha 111, 2001, p.24
  21. ^ Plancha 111, 2001, p.23
  22. ^ a b Pulido & Gómez, 2001, p.32
  23. ^ Pulido & Gómez, 2001, p.30
  24. ^ a b Pulido & Gómez, 2001, pp.21-26
  25. ^ Pulido & Gómez, 2001, p.28
  26. ^ Correa Martínez et al., 2019, p.49
  27. ^ Plancha 303, 2002, p.27
  28. ^ Terraza et al., 2008, p.22
  29. ^ Plancha 229, 2015, pp.46-55
  30. ^ Plancha 303, 2002, p.26
  31. ^ Moreno Sánchez et al., 2009, p.53
  32. ^ Mantilla Figueroa et al., 2015, p.43
  33. ^ Manosalva Sánchez et al., 2017, p.84
  34. ^ a b Plancha 303, 2002, p.24
  35. ^ a b Mantilla Figueroa et al., 2015, p.42
  36. ^ Arango Mejía et al., 2012, p.25
  37. ^ Plancha 350, 2011, p.49
  38. ^ Pulido & Gómez, 2001, pp.17-21
  39. ^ Plancha 111, 2001, p.13
  40. ^ Plancha 303, 2002, p.23
  41. ^ Plancha 348, 2015, p.38
  42. ^ Planchas 367-414, 2003, p.35
  43. ^ Toro Toro et al., 2014, p.22
  44. ^ Plancha 303, 2002, p.21
  45. ^ a b c d Bonilla et al., 2016, p.19
  46. ^ Gómez Tapias et al., 2015, p.209
  47. ^ a b Bonilla et al., 2016, p.22
  48. ^ a b Duarte et al., 2019
  49. ^ García González et al., 2009
  50. ^ Pulido & Gómez, 2001
  51. ^ García González et al., 2009, p.60

Bibliography edit

  • Badouin, Cyril; Gérard Delanoy; Josep Antón Moreno Bedmar; Antoine Pictet; Jean Vermeulen; Gabriel Conte; Roland Gonnet; Patrick Boselli, and Marc Bonelli. 2016. Revision of the Early Cretaceous genera Heminautilus SPATH, 1927, and Josanautilus MARTÍNEZ & GRAUGES, 2006 (Nautilida, Cenoceratidae). Carnets Geologicás 16. 61–212. Accessed 2017-01-20.
  • Barrero, Dario; Andrés Pardo; Carlos A. Vargas, and Juan F. Martínez. 2007. Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal, 1–92. ANH.
  • García González, Mario; Ricardo Mier Umaña; Luis Enrique Cruz Guevara, and Mauricio Vásquez. 2009. Informe Ejecutivo - evaluación del potencial hidrocarburífero de las cuencas colombianas, 1–219. Universidad Industrial de Santander.
  • Monje Durán, Camila; Camila Martínez; Ignacio Escapa, and Santiago Madriñán. 2016. Nuevos registros de helechos y coníferas del Cretácico Inferior en la cuenca del Valle Superior del Magdalena, Colombia. Boletín de Geología, Universidad Industrial de Santander 38. 29–42. Accessed 2017-03-31.
  • Núñez Tello, Alberto. 2003. Cartografía geológica de las zonas Andina Sur y Garzón-Quetame (Colombia) - Memoria explicativa de las planchas 411 La Cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Piamonte, 448 Monopamba, 449 Orito y 465 Churuyaco, 1–298. INGEOMINAS.
  • Velandia P., Francisco; Alberto Núñez T., and Germán Marquínez. 2001. Mapa Geológico del Departamento del Huila - 1:300,000 - Memoria explicativa, 1–152. INGEOMINAS.
  • Villamil, Tomas. 2012. Chronology Relative Sea Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia, 161–216. Society for Sedimentary Geology (SEPM).

Maps edit