Statement of the theorem
edit
Let a function
f
{\displaystyle f}
be analytic on a closed disc of radius R centered at the origin . Suppose that r < R . Then, we have the following inequality:
‖
f
‖
r
≤
2
r
R
−
r
sup
|
z
|
≤
R
Re
f
(
z
)
+
R
+
r
R
−
r
|
f
(
0
)
|
.
{\displaystyle \|f\|_{r}\leq {\frac {2r}{R-r}}\sup _{|z|\leq R}\operatorname {Re} f(z)+{\frac {R+r}{R-r}}|f(0)|.}
Here, the norm on the left-hand side denotes the maximum value of f in the closed disc:
‖
f
‖
r
=
max
|
z
|
≤
r
|
f
(
z
)
|
=
max
|
z
|
=
r
|
f
(
z
)
|
{\displaystyle \|f\|_{r}=\max _{|z|\leq r}|f(z)|=\max _{|z|=r}|f(z)|}
(where the last equality is due to the maximum modulus principle).
Define A by
A
=
sup
|
z
|
≤
R
Re
f
(
z
)
.
{\displaystyle A=\sup _{|z|\leq R}\operatorname {Re} f(z).}
If f is constant c , the inequality follows from
(
R
+
r
)
|
c
|
+
2
r
Re
c
≥
(
R
−
r
)
|
c
|
{\displaystyle (R+r)|c|+2r\operatorname {Re} c\geq (R-r)|c|}
, so we may assume f is nonconstant. First let f (0) = 0. Since Re f is harmonic, Re f (0) is equal to the average of its values around any circle centered at 0. That is,
Re
f
(
0
)
=
∫
0
1
Re
f
(
R
e
2
π
i
s
)
d
s
.
{\displaystyle \operatorname {Re} f(0)=\int _{0}^{1}\operatorname {Re} f(R{\rm {e}}^{2\pi {\rm {i}}s}){\,{\rm {d}}}s.}
Since f is regular and nonconstant, we have that Re f is also nonconstant. Since Re f (0) = 0, we must have Re
f
(
z
)
>
0
{\displaystyle f(z)>0}
for some z on the circle
|
z
|
=
R
{\displaystyle |z|=R}
, so we may take
A
>
0
{\displaystyle A>0}
. Now f maps into the half-plane P to the left of the x =A line. Roughly, our goal is to map this half-plane to a disk, apply Schwarz's lemma there, and make out the stated inequality.
w
↦
w
/
A
−
1
{\displaystyle w\mapsto w/A-1}
sends P to the standard left half-plane.
w
↦
R
(
w
+
1
)
/
(
w
−
1
)
{\displaystyle w\mapsto R(w+1)/(w-1)}
sends the left half-plane to the circle of radius R centered at the origin. The composite, which maps 0 to 0, is the desired map:
w
↦
R
w
w
−
2
A
.
{\displaystyle w\mapsto {\frac {Rw}{w-2A}}.}
From Schwarz's lemma applied to the composite of this map and f , we have
|
R
f
(
z
)
|
|
f
(
z
)
−
2
A
|
≤
|
z
|
.
{\displaystyle {\frac {|Rf(z)|}{|f(z)-2A|}}\leq |z|.}
Take |z | ≤ r . The above becomes
R
|
f
(
z
)
|
≤
r
|
f
(
z
)
−
2
A
|
≤
r
|
f
(
z
)
|
+
2
A
r
{\displaystyle R|f(z)|\leq r|f(z)-2A|\leq r|f(z)|+2Ar}
so
|
f
(
z
)
|
≤
2
A
r
R
−
r
{\displaystyle |f(z)|\leq {\frac {2Ar}{R-r}}}
,
as claimed. In the general case, we may apply the above to f (z )-f (0):
|
f
(
z
)
|
−
|
f
(
0
)
|
≤
|
f
(
z
)
−
f
(
0
)
|
≤
2
r
R
−
r
sup
|
w
|
≤
R
Re
(
f
(
w
)
−
f
(
0
)
)
≤
2
r
R
−
r
(
sup
|
w
|
≤
R
Re
f
(
w
)
+
|
f
(
0
)
|
)
,
{\displaystyle {\begin{aligned}|f(z)|-|f(0)|&\leq |f(z)-f(0)|\leq {\frac {2r}{R-r}}\sup _{|w|\leq R}\operatorname {Re} (f(w)-f(0))\\&\leq {\frac {2r}{R-r}}\left(\sup _{|w|\leq R}\operatorname {Re} f(w)+|f(0)|\right),\end{aligned}}}
which, when rearranged, gives the claim.
Alternative result and proof
edit
We start with the following result:[ 1]
Proof[ 2]
It suffices to prove the
u
{\displaystyle u}
case, since the
v
{\displaystyle v}
case is found by
−
i
f
=
v
−
i
u
{\displaystyle -if=v-iu}
.
WLOG, subtract a constant away, to get
f
(
0
)
=
0
{\displaystyle f(0)=0}
.
Do three contour integrals around
∂
B
(
0
,
R
)
{\displaystyle \partial B(0,R)}
using Cauchy integral formula:
f
(
n
)
(
0
)
/
n
!
=
1
2
π
i
∮
f
(
z
)
z
n
+
1
d
z
=
∫
0
1
f
(
R
e
2
π
i
t
)
R
n
e
2
π
i
n
t
d
t
{\displaystyle f^{(n)}(0)/n!={\frac {1}{2\pi i}}\oint {\frac {f(z)}{z^{n+1}}}dz=\int _{0}^{1}{\frac {f(Re^{2\pi it})}{R^{n}e^{2\pi int}}}dt}
∫
0
1
f
(
R
e
2
π
i
t
)
e
2
π
i
n
t
d
t
=
1
2
π
i
R
n
∮
f
(
z
)
z
n
−
1
d
z
=
0
{\displaystyle \int _{0}^{1}f(Re^{2\pi it})e^{2\pi int}dt={\frac {1}{2\pi iR^{n}}}\oint f(z)z^{n-1}dz=0}
∫
0
1
f
(
R
e
2
π
i
t
)
d
t
=
1
2
π
i
∮
f
(
z
)
z
−
1
d
z
=
f
(
0
)
=
0
{\displaystyle \int _{0}^{1}f(Re^{2\pi it})dt={\frac {1}{2\pi i}}\oint f(z)z^{-1}dz=f(0)=0}
Pick angle
θ
{\displaystyle \theta }
, so that
e
−
i
θ
f
(
n
)
(
0
)
=
|
f
(
n
)
(
0
)
|
{\displaystyle e^{-i\theta }f^{(n)}(0)=|f^{(n)}(0)|}
. Then by linearly combining the three integrals, we get
∫
0
1
f
(
R
e
2
π
i
t
)
d
t
(
1
+
cos
(
2
π
n
t
+
θ
)
)
=
1
2
R
n
|
f
(
n
)
(
0
)
|
/
n
!
{\displaystyle \int _{0}^{1}f(Re^{2\pi it})dt(1+\cos(2\pi nt+\theta ))={\frac {1}{2}}R^{n}|f^{(n)}(0)|/n!}
The imaginary part vanishes, and the real part gives
∫
0
1
u
(
R
e
2
π
i
t
)
d
t
(
1
+
cos
(
2
π
n
t
+
θ
)
)
=
1
2
R
n
|
f
(
n
)
(
0
)
|
/
n
!
{\displaystyle \int _{0}^{1}u(Re^{2\pi it})dt(1+\cos(2\pi nt+\theta ))={\frac {1}{2}}R^{n}|f^{(n)}(0)|/n!}
The integral is bounded above by
M
∫
0
1
d
t
(
1
+
cos
(
2
π
n
t
+
θ
)
)
=
M
{\displaystyle M\int _{0}^{1}dt(1+\cos(2\pi nt+\theta ))=M}
, so we have the result.
Corollary 1 — With the same assumptions, for all
r
∈
(
0
,
R
)
{\displaystyle r\in (0,R)}
,
max
z
∈
∂
B
(
0
,
r
)
|
f
(
z
)
|
≤
2
r
R
−
r
M
+
R
+
r
R
−
r
|
f
(
0
)
|
{\displaystyle \max _{z\in \partial B(0,r)}|f(z)|\leq {\frac {2r}{R-r}}M+{\frac {R+r}{R-r}}|f(0)|}
Proof
It suffices to prove the case of
f
(
0
)
=
0
{\displaystyle f(0)=0}
.
By previous result, using the Taylor expansion,
|
f
(
z
)
|
≤
∑
n
=
0
∞
1
n
!
|
f
(
n
)
(
0
)
|
⋅
|
z
|
n
≤
|
f
(
0
)
|
+
∑
n
=
1
∞
2
M
(
r
/
R
)
n
=
2
r
R
−
r
M
{\displaystyle |f(z)|\leq \sum _{n=0}^{\infty }{\frac {1}{n!}}|f^{(n)}(0)|\cdot |z|^{n}\leq |f(0)|+\sum _{n=1}^{\infty }2M(r/R)^{n}={\frac {2r}{R-r}}M}
Corollary 2 (Titchmarsh, 5.51, improved) — With the same assumptions, for all
r
∈
(
0
,
R
)
{\displaystyle r\in (0,R)}
, and all integer
n
≥
1
{\displaystyle n\geq 1}
max
z
∈
∂
B
(
0
,
r
)
|
f
(
n
)
(
z
)
|
≤
2
n
!
(
R
−
r
)
n
+
1
R
(
M
−
u
(
0
)
)
{\displaystyle \max _{z\in \partial B(0,r)}|f^{(n)}(z)|\leq {\frac {2n!}{(R-r)^{n+1}}}R(M-u(0))}
Proof
It suffices to prove the case of
f
(
0
)
=
0
{\displaystyle f(0)=0}
as well. And similarly to above,
|
f
(
n
)
(
z
)
|
≤
∑
k
=
n
∞
k
⋯
(
k
−
n
+
1
)
k
!
|
f
(
k
)
(
0
)
|
⋅
|
z
|
k
−
n
≤
2
(
M
−
u
(
0
)
)
R
n
∑
k
=
n
∞
k
⋯
(
k
−
n
+
1
)
(
r
R
)
k
−
n
=
2
n
!
(
R
−
r
)
n
+
1
R
(
M
−
u
(
0
)
)
{\displaystyle {\begin{aligned}|f^{(n)}(z)|&\leq \sum _{k=n}^{\infty }{\frac {k\cdots (k-n+1)}{k!}}|f^{(k)}(0)|\cdot |z|^{k-n}\\&\leq {\frac {2(M-u(0))}{R^{n}}}\sum _{k=n}^{\infty }k\cdots (k-n+1)\left({\frac {r}{R}}\right)^{k-n}\\&={\frac {2n!}{(R-r)^{n+1}}}R(M-u(0))\end{aligned}}}
Borel–Carathéodory is often used to bound the logarithm of derivatives, such as in the proof of Hadamard factorization theorem .
The following example is a strengthening of Liouville's theorem .
Proof
By Borel-Caratheodory lemma, for any
0
<
r
<
r
k
{\displaystyle 0<r<r_{k}}
,
max
z
∈
∂
B
(
0
,
r
)
|
f
(
n
+
1
)
(
z
)
|
≤
4
n
!
(
r
k
−
r
)
n
+
2
r
k
M
{\displaystyle \max _{z\in \partial B(0,r)}|f^{(n+1)}(z)|\leq {\frac {4n!}{(r_{k}-r)^{n+2}}}r_{k}M}
where
M
=
max
z
∈
∂
B
(
0
,
r
k
)
ℜ
(
f
(
z
)
)
=
o
(
r
k
n
+
1
)
{\displaystyle M=\max _{z\in \partial B(0,r_{k})}\Re (f(z))=o(r_{k}^{n+1})}
.
Letting
r
≤
r
k
2
{\displaystyle r\leq {\frac {r_{k}}{2}}}
, and taking the
k
↗
∞
{\displaystyle k\nearrow \infty }
limit:
max
z
∈
∂
B
(
0
,
r
)
|
f
(
n
+
1
)
(
z
)
|
=
o
(
1
)
→
0
{\displaystyle \max _{z\in \partial B(0,r)}|f^{(n+1)}(z)|=o(1)\to 0}
Thus by Liouville's theorem,
f
(
n
+
1
)
{\displaystyle f^{(n+1)}}
is a constant function, and it converges to zero, so it is zero. So
f
{\displaystyle f}
is a polynomial of degree at most
n
{\displaystyle n}
.
Proof
Apply the improved Liouville theorem to
g
=
log
(
f
)
{\displaystyle g=\log(f)}
.
Lang, Serge (1999). Complex Analysis (4th ed.). New York: Springer-Verlag, Inc. ISBN 0-387-98592-1 .
Titchmarsh, E. C. (1938). The theory of functions. Oxford University Press.