Bacillus methanolicus is a gram positive, thermophilic, methylotrophic member of the genus Bacillus. The most well characterized strain of the species, Bacillus methanolicus MGA3, was isolated from freshwater marsh soils, and grows rapidly in cultures heated to up to 60 °C using only methanol as a carbon source.[2] The genome of B. methanolicus MGA3 was fully sequenced in 2014, revealing a 3,337,035 bp linear chromosome and two natural plasmids, pBM19 and pBM69.[3]

Bacillus methanolicus
Cell pellets of recombinant B. methanolicus MGA3 (pHP13) and MGA3 (pTH1mp-crtMN) strains cultivated in SWE50 medium.[1]
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Bacillota
Class: Bacilli
Order: Bacillales
Family: Bacillaceae
Genus: Bacillus
Species:
B. methanolicus
Binomial name
Bacillus methanolicus
Arfman, 1992

Chemical production from methanol

edit

Researchers are currently investigating the use of B. methanolicus MGA3 for production of chemicals such as L-glutamate, L-lysine, cadaverine and gamma-aminobutyric acid from methanol.[2][4][5]

Synthetic methylotrophy

edit

The methylotrophic metabolism of B. methanolicus is being explored for establishing synthetic methylotrophy in other organisms. Recombinant expression of the pentose phosphate pathway from B. methanolicus in E. coli has shown promise in creating synthetically methylotrophic E. coli.[6]

References

edit
  1. ^ Hakvåg, Sigrid; Nærdal, Ingemar; Heggeset, Tonje M. B.; Kristiansen, Kåre A.; Aasen, Inga M.; Brautaset, Trygve (9 April 2020). "Production of Value-Added Chemicals by Bacillus methanolicus Strains Cultivated on Mannitol and Extracts of Seaweed Saccharina latissima at 50°C". Frontiers in Microbiology. 11: 680. doi:10.3389/fmicb.2020.00680. PMC 7161427. PMID 32328058.
  2. ^ a b Schendel, Frederick J.; Bremmon, Craig E.; Flickinger, Michael C.; Guettler, Michael; Hanson, Richard S. (1990-04-01). "L-Lysine Production at 50 °C by Mutants of a Newly Isolated and Characterized Methylotrophic Bacillus sp". Applied and Environmental Microbiology. 56 (4): 963–970. doi:10.1128/AEM.56.4.963-970.1990. PMC 184329. PMID 2111119.
  3. ^ Irla, Marta; Neshat, Armin; Winkler, Anika; Albersmeier, Andreas; Heggeset, Tonje M.B.; Brautaset, Trygve; Kalinowski, Jörn; Wendisch, Volker F.; Rückert, Christian (2014). "Complete genome sequence of Bacillus methanolicus MGA3, a thermotolerant amino acid producing methylotroph". Journal of Biotechnology. 188: 110–111. doi:10.1016/j.jbiotec.2014.08.013. ISSN 0168-1656. PMID 25152427.
  4. ^ Naerdal, Ingemar; Pfeifenschneider, Johannes; Brautaset, Trygve; Wendisch, Volker F. (2015). "Methanol-based cadaverine production by genetically engineeredBacillus methanolicusstrains". Microbial Biotechnology. 8 (2): 342–350. doi:10.1111/1751-7915.12257. ISSN 1751-7915. PMC 4353347. PMID 25644214.
  5. ^ Irla, Marta; Nærdal, Ingemar; Brautaset, Trygve; Wendisch, Volker F. (2017). "Methanol-based γ-aminobutyric acid (GABA) production by genetically engineered Bacillus methanolicus strains". Industrial Crops and Products. 106: 12–20. doi:10.1016/j.indcrop.2016.11.050. ISSN 0926-6690.
  6. ^ Bennett, R. Kyle; Gonzalez, Jacqueline E.; Whitaker, W. Brian; Antoniewicz, Maciek R.; Papoutsakis, Eleftherios T. (2018). "Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph". Metabolic Engineering. 45: 75–85. doi:10.1016/j.ymben.2017.11.016. ISSN 1096-7176. OSTI 1411402. PMID 29203223.