In algebra, the Artin–Tate lemma, named after John Tate and his father Emil Artin, states:[1]

Let A be a commutative Noetherian ring and commutative algebras over A. If C is of finite type over A and if C is finite over B, then B is of finite type over A.

(Here, "of finite type" means "finitely generated algebra" and "finite" means "finitely generated module".) The lemma was introduced by E. Artin and J. Tate in 1951[2] to give a proof of Hilbert's Nullstellensatz.

The lemma is similar to the Eakin–Nagata theorem, which says: if C is finite over B and C is a Noetherian ring, then B is a Noetherian ring.

Proof edit

The following proof can be found in Atiyah–MacDonald.[3] Let   generate   as an  -algebra and let   generate   as a  -module. Then we can write

 

with  . Then   is finite over the  -algebra   generated by the  . Using that   and hence   is Noetherian, also   is finite over  . Since   is a finitely generated  -algebra, also   is a finitely generated  -algebra.

Noetherian necessary edit

Without the assumption that A is Noetherian, the statement of the Artin–Tate lemma is no longer true. Indeed, for any non-Noetherian ring A we can define an A-algebra structure on   by declaring  . Then for any ideal   which is not finitely generated,   is not of finite type over A, but all conditions as in the lemma are satisfied.

References edit

  1. ^ Eisenbud, David, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, 1995, ISBN 0-387-94268-8, Exercise 4.32
  2. ^ E Artin, J.T Tate, "A note on finite ring extensions," J. Math. Soc Japan, Volume 3, 1951, pp. 74–77
  3. ^ M. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison–Wesley, 1994. ISBN 0-201-40751-5. Proposition 7.8

External links edit