Anopheles sundaicus is a zoophilic mosquito of southeast Asia.

Anopheles sundaicus
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Diptera
Family: Culicidae
Genus: Anopheles
Species:
A. sundaicus
Binomial name
Anopheles sundaicus
(Rodenwaldt, 1948)

Species complex edit

Sukowati et al. 1999 finds there to be several cryptic species in an An. sundaicus complex. They use protein electrophoresis to reveal populations defined by their characteristic allozymes.[1][2]

Hosts edit

Hosts include Bubalus bubalis.[3] Kumari et al. 1993 finds An. sundaicus exclusively feeding on B. bubalis on Car Nicobar Island, Moorhouse and Wharton 1965 finds the same in Malaysia and Gould et al. 1966 in Thailand.[3][4]

Control edit

Insecticide edit

Sargassum wightii and Bacillus thuringiensis var. israelensis can be combined to produce antifeedant, insecticidal and growth inhibitor effects.[5]

Insecticide resistance edit

Early studies of the inheritance of insecticide resistance were performed by Davidson 1957[6][7]: 97 [8] and Soerono et al. 1965.[7]: 97  Davidson 1957 found An. sundaicus DDT resistance was provided by only a single allele.[8]

References edit

  1. ^ Krzywinski, Jaroslaw; Besansky, Nora J. (2003). "Molecular Systematics of Anopheles: From Subgenera to Subpopulations". Annual Review of Entomology. 48 (1). Annual Reviews: 111–139. doi:10.1146/annurev.ento.48.091801.112647. ISSN 0066-4170. PMID 12208816.
  2. ^ Manguin, Sylvie; Garros, C.; Dusfour, Isabelle; Harbach, Ralph E.; Coosemans, M. (2008). "Bionomics, taxonomy, and distribution of the major malaria vector taxa of Anopheles subgenus Cellia in Southeast Asia: An updated review". Infection, Genetics and Evolution. 8 (4). Elsevier: 489–503. doi:10.1016/j.meegid.2007.11.004. ISSN 1567-1348. PMID 18178531.
  3. ^ a b Dusfour, Isabelle; Harbach, Ralph E.; Manguin, Sylvie (2004-10-01). "Bionomics and systematics of the oriental Anopheles sundaicus complex in relation to malaria transmission and vector control" (PDF). The American Journal of Tropical Medicine and Hygiene. 71 (4): 518–524. doi:10.4269/ajtmh.2004.71.518. ISSN 0002-9637. PMID 15516652. S2CID 37387298.
  4. ^ Tananchai, Chatchai; Manguin, Sylvie; Bangs, Michael J.; Chareonviriyaphap, Theeraphap (2019). "Malaria Vectors and Species Complexes in Thailand: Implications for Vector Control". Trends in Parasitology. 35 (7). Cell Press: 544–558. doi:10.1016/j.pt.2019.04.013. ISSN 1471-4922. PMID 31182384. S2CID 184485189.
  5. ^ Song, Chenggang; Yang, Jian; Zhang, Mingzhe; Ding, Gang; Jia, Chengguo; Qin, Jianchun; Guo, Lanping (2021-04-14). "Marine Natural Products: The Important Resource of Biological Insecticide". Chemistry & Biodiversity. 18 (5). Wiley: e2001020. doi:10.1002/cbdv.202001020. ISSN 1612-1872. PMID 33855815. S2CID 233243039.
  6. ^ Davidson, G.; Mason, G. F. (1963). "Genetics of Mosquitoes". Annual Review of Entomology. 8 (1). Annual Reviews: 177–196. doi:10.1146/annurev.en.08.010163.001141. ISSN 0066-4170. PMID 14025359.
  7. ^ a b Davidson, G. (1974). Genetic control of insect pests. London New York City: Academic Press. p. +158. ISBN 978-0-323-16080-3. OCLC 761181727.
  8. ^ a b Brown, A. W. A. (1960). "Mechanisms of Resistance Against Insecticides". Annual Review of Entomology. 5 (1). Annual Reviews: 301–326. doi:10.1146/annurev.en.05.010160.001505. ISSN 0066-4170.