Acaryochloris marina is a symbiotic species of the phylum Cyanobacteria that produces chlorophyll d, allowing it to use far-red light, at 770 nm wavelength.[3]

Acaryochloris marina
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Cyanobacteria
Class: Cyanophyceae
Order: Synechococcales
Family: Acaryochloridaceae
Komárek et al. 2014[2]
Genus: Acaryochloris
Miyashita & Chihara 2003[1]
Species:
A. marina
Binomial name
Acaryochloris marina
Miyashita & Chihara, 2003[1]
Chlorophyll d

Description edit

It was first discovered in 1993 from coastal isolates of coral in the Republic of Palau in the west Pacific Ocean and announced in 1996.[4] Despite the claim in the 1996 Nature paper that its formal description was to be published shortly thereafter,[4] a tentative partial description was presented in 2003 due to phylogenetic issues (deep branching cyanobacterium).[1]

Genome edit

Its genome was sequenced in 2008, revealing a large bacterial genome of 8.3 Mb with nine plasmids.[5]

Etymology edit

The name Acaryochloris is a combination of the Greek prefix a (ἄν)[6] meaning "without", caryo (κάρυον)[7] meaning "nut" (here intended as "nucleus") and chloros (χλωρός)[8] meaning green;[9] therefore it is Neo-Latin Acaryochloris meaning "without nucleus green".[1] The specific epithet marina is Latin meaning "marine".[1]

Classification edit

Due to historical reason, the classification of the Cyanobacteria is problematic and many are not validly published, meaning they have not yet been placed into the classification framework.[10] One of these not officially recognised species is Acaryochloris marina, which technically should be written as "Acaryochloris marina" in official writings, but in effect this is rarely done (cf.[5][11])

Exoplanet habitability edit

Scientists including NASA's Nancy Kiang have proposed that the existence of Acaryochloris marina suggests that organisms that use chlorophyll d, rather than chlorophyll a, may be able to perform oxygenic photosynthesis on exoplanets orbiting red dwarf stars (which emit much less light than the Sun).[12][13] Because about 70% of the stars in the Milky Way galaxy are red dwarfs,[14] the existence of A. marina implies that oxygenic photosynthesis may be occurring on far more exoplanets than astrobiologists initially thought possible.

See also edit

References edit

  1. ^ a b c d e Miyashita, H.; Ikemoto, H.; Kurano, N.; Miyachi, S.; Chihara, M. (2003). "Acaryochloris Marina Gen. Et Sp. Nov. (Cyanobacteria), an Oxygenic Photosynthetic Prokaryote Containing Chl D As a Major Pigment1". Journal of Phycology. 39 (6): 1247–1253. Bibcode:2003JPcgy..39.1247M. doi:10.1111/j.0022-3646.2003.03-158.x. S2CID 84330163.
  2. ^ Komárek J, Kaštovský J, Mareš J, Johansen JR (2014). "Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach" (PDF). Preslia. 86: 295–335.
  3. ^ "A New Kind of Photosynthesis Has Been Discovered, Pushing the Limits on Life".
  4. ^ a b H. Miyashita; H. Ikemoto; N. Kurano; K. Adachi; M. Chihara & S. Miyachi (1996). "Chlorophyll d as a major pigment". Nature. 383 (6599): 402. Bibcode:1996Natur.383..402M. doi:10.1038/383402a0.
  5. ^ a b Swingley, W. D.; Chen, M.; Cheung, P. C.; Conrad, A. L.; Dejesa, L. C.; Hao, J.; Honchak, B. M.; Karbach, L. E.; Kurdoglu, A.; Lahiri, S.; Mastrian, S. D.; Miyashita, H.; Page, L.; Ramakrishna, P.; Satoh, S.; Sattley, W. M.; Shimada, Y.; Taylor, H. L.; Tomo, T.; Tsuchiya, T.; Wang, Z. T.; Raymond, J.; Mimuro, M.; Blankenship, R. E.; Touchman, J. W. (2008). "Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina". Proceedings of the National Academy of Sciences. 105 (6): 2005–2010. Bibcode:2008PNAS..105.2005S. doi:10.1073/pnas.0709772105. PMC 2538872. PMID 18252824.
  6. ^ ἄν. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
  7. ^ κάρυον. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
  8. ^ χλωρός. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
  9. ^ Gender of suffices in LPSN; Parte, Aidan C.; Sardà Carbasse, Joaquim; Meier-Kolthoff, Jan P.; Reimer, Lorenz C.; Göker, Markus (1 November 2020). "List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ". International Journal of Systematic and Evolutionary Microbiology. 70 (11): 5607–5612. doi:10.1099/ijsem.0.004332.
  10. ^ Classification of Cyanobacteria in LPSN; Parte, Aidan C.; Sardà Carbasse, Joaquim; Meier-Kolthoff, Jan P.; Reimer, Lorenz C.; Göker, Markus (1 November 2020). "List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ". International Journal of Systematic and Evolutionary Microbiology. 70 (11): 5607–5612. doi:10.1099/ijsem.0.004332.
  11. ^ Kühl, M.; Chen, M.; Ralph, P. J.; Schreiber, U.; Larkum, A. W. D. (2005). "Ecology: A niche for cyanobacteria containing chlorophyll d". Nature. 433 (7028): 820. Bibcode:2005Natur.433..820K. doi:10.1038/433820a. PMID 15729331.
  12. ^ Gronstal, Aaron (February 2012). "Far-Out Photosynthesis". News & Features. NASA. Retrieved 26 January 2014.
  13. ^ Mielke, S.P.; N.Y. Kiang; R.E. Blankenship; M.R. Gunner & D. Mauzerall (2011). "Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygenic species". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1807 (9): 1231–1236. doi:10.1016/j.bbabio.2011.06.007. PMID 21708123.
  14. ^ "Colorful Dwarfs". StarDate. The University of Texas McDonald Observatory. Retrieved 23 January 2014.