Abell 697 BCG (short for Abell 697 Brightest Cluster Galaxy), also known as PGC 2079433, is a massive type-cD elliptical galaxy residing as the brightest cluster galaxy in Abell 697 galaxy cluster. It is located in the constellation of Lynx and has a redshift of 0.28, meaning the galaxy is located 3.5 billion light-years away from Earth.[1]

Abell 697 Brightest Cluster Galaxy
Abell 697 BCG captured by Hubble Space Telescope
Observation data (J2000.0 epoch)
ConstellationLynx
Right ascension08h 42m 57.557s
Declination+36d 21m 59.27s
Redshift0.282280
Heliocentric radial velocity84,625 km/s
Distance3.539 Gly (1085 Mpc)
Group or clusterAbell 697
Apparent magnitude (V)0.105
Apparent magnitude (B)0.139
Surface brightness18.7
Characteristics
TypeBrCLG
Size885,200 ly
Apparent size (V)0.18' x 0.12'
Other designations
PGC 2079433, OGC 43, SSTSL2 J084257.56+362159.7, 2MASX J08425763+3622000, HeCS J084257.56+362159.2, SDSS J084257.56+362159.3

Characteristics

edit
 
Sloan Digital Sky Survey image of Abell 697 BCG

Abell 697 BCG is one of the largest galaxies with a diameter of 885,200 light-years and a central velocity distribution of between the ranges of ә ~ 300–400 km s−1.[2][3] Such of these velocity distributions are measured as σcl and σ*,BCGs in which the relation found is tight. The σ*,BCGcl ratio decreases as a function of σcl indicating its formation is efficient in lower mass halos.[4]

The galaxy is optically luminous[5] and such classfied as a low-excitation radio galaxy with a 1.4 GHz luminosity range that is between 2 × 1023 and 3 × 1025 W Hz−1.[6][7] Moreover, Abell 697 BCG is a fossil group galaxy that is on average fainter[8] and has a radio-loud (L 1.4 GHz > 1023 W Hz−1) active galactic nucleus.[9] It also contains an extended stellar envelope with an excessive light profile reaching over several hundred kilometers.[10] The light profile is described by a de Vaucouleurs surface brightness law, Ѱ(r) α r1/4, over a large range in its radius[11] and has a massive black hole in its center.[12] Despite offsets from the cluster's X-ray center, it is aligned with its cluster mass distribution.[13]

Researchers theorized Abell 697 BCG was formed through major mergers. As the galaxies of various self-gravitating disks and halo types collide with one after another, dynamical friction along with tidal forces converts orbital kinetic energy into random energy. This allows them merge into an amorphous, triaxial system which resembles an elliptical galaxy like Abell 697 BCG[14][15] and at the same time, the stellar mass of the central galaxy is built up.[16] According to optical observations presented by researchers from Keck Observatory, Abell 697 BCG has since undergone another recent merger given it shows an asymmetric disturbed structure in cD halo.[17]

The star formation in Abell 697 is estimated to be (SFR). 22+6.2 -5.3% according to researchers who detected it in the far-infrared analysis, with SFR = 1-150 M ⊙ yr−1.[18]

Dark matter halo

edit

The dark matter halo in the galaxy cluster is highly elongated with the mean ellipticity of 0.482 ± 0.028. According to researchers, the position angle of major axis of the dark matter halo and Abell 697 BCG is aligned together with the mean value of alignment angle of 22.2 ± 3.9 deg. However it is more elongated compared to the galaxy as the mean difference of the ellipticity is 0.11 ± 0.03. This research was conducted through sample of 39 massive clusters from Hubble Frontier Field (HFF), Cluster Lensing And Supernova survey with Hubble (CLASH), and Reionization Lensing Cluster Survey (RELICS).[19]

Abell 697

edit

The galaxy cluster where Abell 697 BCG is residing in, is found to be a massive[20] and rich cluster at z=0.282, obtained by M <R_max 0.75 Mpc h−1 = 9.5 x 1014 solar masses of h−1 and M <R_vir = 3.85 Mpc h−1 = 4.5x1015 solar masses h^-1 for the region sampled through spectroscopic data.[21] The cluster is known to have active galactic nucleus activity varying between its cluster center and outskirts. This is caused by ram pressure removing gas from other galaxies infalling into Abell 697 or attributed by increased frequency of galaxy mergers, given several galaxies display disturbed morphologies.[22]

The intracluster medium in Abell 697 is hot, with its X-ray temperature inferring from a broadband (0.7-7.0 keV) spectrum and a hard-band (2.0-7.0 keV). The emission of the intracluster medium is estimated to be measured >=10-30% for its primary hot component while its cool component is TX = 0.5-3.0 keV.[23] Moreover, the cluster contains a magnetic field with strength of 5−10 μG and power-law indices found between n = 1 and n = 4.[24]

Not only to mention, Abell 697 is X-ray luminous, and not fully relaxed as observed by further investigations. This indicates the cluster is undergoing a complex cluster merger.[21][25] The total radio spectrum of the halo in Abell 697 is found steep with a value of α~325 MHz~1.4 GHz ≈ 1.7-1.8.[26] and further classified as an Ultra Steep Spectrum Radio Halo (USSRH).[27] This indicates steep spectrum halos in merging clusters are caused by emitting electrons accelerated by turbulence.[28] In addition, Abell 697 contains luminous infrared galaxies, showing rapid molecular gas exhaustion, effective in quenching star formations.[29]

The cluster is also known to have a gravitational lens. This provides opportunities for researchers to investigate the mass distribution at the cluster's core and study galaxies located at high redshift. Using a strong lensing model, they found the lensing strength of Abell 697 has an area of ∣μ∣ ≥ 3 for z s = 9, normalized to a lens redshift of z = 0.5. Although there is a possible trend between the lensing strength and large-scale mass of Kendall τ = 0.26 and Spearman r = 0.36, the inner slope measuring 50 kpc ≤ r ≤ 200 kpc of the projected mass-density profile has a higher probability of correlated with its lensing strength. This can set an upper bound on the lensing strength of a cluster. Given the correlation of the effective Einstein area and large ( ≳ 30.″0) radial extent of lensing evidence, the gravitational lens in Abell 697 is powerful[30] since it was able to lens a high-redshift J 125 ≃ 25.7 galaxy candidate, which a single emission-line is detected through Gemini-N/GMOS spectroscopic observations.[31] Such results can help researchers design future observations, more effective, through they can better estimate using clusters as cosmic telescopes.[32]

References

edit
  1. ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-06-14.
  2. ^ Dressler, A. (1979-08-01). "The dynamics and structure of the cD galaxy in Abell 2029". The Astrophysical Journal. 231: 659–670. Bibcode:1979ApJ...231..659D. doi:10.1086/157229. ISSN 0004-637X.
  3. ^ Fisher, David; Illingworth, Garth; Franx, Marijn (1995-01-01). "Kinematics of 13 Brightest Cluster Galaxies". The Astrophysical Journal. 438: 539. Bibcode:1995ApJ...438..539F. doi:10.1086/175100. ISSN 0004-637X.
  4. ^ Sohn, Jubee; Geller, Margaret J.; Diaferio, Antonaldo; Rines, Kenneth J. (2020-03-01). "Velocity Dispersions of Brightest Cluster Galaxies and Their Host Clusters". The Astrophysical Journal. 891 (2): 129. arXiv:1910.11192. Bibcode:2020ApJ...891..129S. doi:10.3847/1538-4357/ab6e6a. ISSN 0004-637X.
  5. ^ Ogle, Patrick M.; Lanz, Lauranne; Appleton, Philip N.; Helou, George; Mazzarella, Joseph (2019-07-01). "A Catalog of the Most Optically Luminous Galaxies at z < 0.3: Super Spirals, Super Lenticulars, Super Post-mergers, and Giant Ellipticals". The Astrophysical Journal Supplement Series. 243 (1): 14. arXiv:1904.02806. Bibcode:2019ApJS..243...14O. doi:10.3847/1538-4365/ab21c3. ISSN 0067-0049.
  6. ^ Lin, Yen-Ting; Huang, Hung-Jin; Chen, Yen-Chi (2018-05-01). "An Analysis Framework for Understanding the Origin of Nuclear Activity in Low-power Radio Galaxies". The Astronomical Journal. 155 (5): 188. arXiv:1803.02482. Bibcode:2018AJ....155..188L. doi:10.3847/1538-3881/aab5b4. ISSN 0004-6256.
  7. ^ Hogan, M. T.; Edge, A. C.; Hlavacek-Larrondo, J.; Grainge, K. J. B.; Hamer, S. L.; Mahony, E. K.; Russell, H. R.; Fabian, A. C.; McNamara, B. R.; Wilman, R. J. (2015-10-21). "A Comprehensive Study of the Radio Properties of Brightest Cluster Galaxies". Monthly Notices of the Royal Astronomical Society. 453 (2): 1201–1222. arXiv:1507.03019. doi:10.1093/mnras/stv1517. ISSN 0035-8711.
  8. ^ Tovmassian, H. (2010-04-01). "On the Precursors of Fossil Groups". Revista Mexicana de Astronomia y Astrofisica. 46: 61–66. Bibcode:2010RMxAA..46...61T. ISSN 0185-1101.
  9. ^ Hess, Kelley M.; Wilcots, Eric M.; Hartwick, Victoria L. (2012-08-01). "Fresh Activity in Old Systems: Radio AGNs in Fossil Groups of Galaxies". The Astronomical Journal. 144 (2): 48. arXiv:1206.2679. Bibcode:2012AJ....144...48H. doi:10.1088/0004-6256/144/2/48. ISSN 0004-6256.
  10. ^ Huang, Song; Leauthaud, Alexie; Greene, Jenny E.; Bundy, Kevin; Lin, Yen-Ting; Tanaka, Masayuki; Miyazaki, Satoshi; Komiyama, Yutaka (2018-04-01). "Individual stellar haloes of massive galaxies measured to 100 kpc at 0.3 < z < 0.5 using Hyper Suprime-Cam". Monthly Notices of the Royal Astronomical Society. 475 (3): 3348–3368. arXiv:1707.01904. Bibcode:2018MNRAS.475.3348H. doi:10.1093/mnras/stx3200. ISSN 0035-8711.
  11. ^ Dubinski, John (1998-07-20). "The Origin of the Brightest Cluster Galaxies". The Astrophysical Journal. 502 (1): 141–149. arXiv:astro-ph/9709102. Bibcode:1998ApJ...502..141D. doi:10.1086/305901. ISSN 0004-637X.
  12. ^ Bernardi, M.; Sheth, R. K.; Nichol, R. C.; Miller, C. J.; Schlegel, D.; Frieman, J.; Schneider, D. P.; Subbarao, M.; York, D. G.; Brinkmann, J. (2006-04-01). "A Search for the Most Massive Galaxies: Double Trouble?". The Astronomical Journal. 131 (4): 2018–2034. arXiv:astro-ph/0510696. Bibcode:2006AJ....131.2018B. doi:10.1086/499770. ISSN 0004-6256.
  13. ^ De Propris, Roberto; West, Michael J.; Andrade-Santos, Felipe; Ragone-Figueroa, Cinthia; Rasia, Elena; Forman, William; Jones, Christine; Kipper, Rain; Borgani, Stefano; Lambas, Diego García; Romashkova, Elena A.; Patra, Kishore C. (2021-01-01). "Brightest cluster galaxies: the centre can(not?) hold". Monthly Notices of the Royal Astronomical Society. 500 (1): 310–318. arXiv:2010.09617. Bibcode:2021MNRAS.500..310D. doi:10.1093/mnras/staa3286. ISSN 0035-8711.
  14. ^ Barnes, Joshua E. (1988-08-01). "Encounters of Disk/Halo Galaxies". The Astrophysical Journal. 331: 699. Bibcode:1988ApJ...331..699B. doi:10.1086/166593. ISSN 0004-637X.
  15. ^ Hernquist, Lars (1992-12-01). "Structure of Merger Remnants. I. Bulgeless Progenitors". The Astrophysical Journal. 400: 460. Bibcode:1992ApJ...400..460H. doi:10.1086/172009. ISSN 0004-637X.
  16. ^ Pobre, Savannah; Dalal, Roohi; Strauss, Michael A.; Lin, Yen-Ting (2023-02-09). "Are Brightest Cluster Galaxies Special?". Research Notes of the AAS. 7 (2): 19. Bibcode:2023RNAAS...7...19P. doi:10.3847/2515-5172/acb9e1. ISSN 2515-5172.
  17. ^ Metzger, Mark R.; Ma, Chung-Pei (2000-12-01). "Lensed Arcs and Inner Structure of Abell 697". The Astronomical Journal. 120 (6): 2879–2883. arXiv:astro-ph/9909166. Bibcode:2000AJ....120.2879M. doi:10.1086/316843. ISSN 0004-6256.
  18. ^ Rawle, T. D.; Edge, A. C.; Egami, E.; Rex, M.; Smith, G. P.; Altieri, B.; Fiedler, A.; Haines, C. P.; Pereira, M. J.; Pérez-González, P. G.; Portouw, J.; Valtchanov, I.; Walth, G.; van der Werf, P. P.; Zemcov, M. (2012-03-01). "The Relation between Cool Cluster Cores and Herschel-detected Star Formation in Brightest Cluster Galaxies". The Astrophysical Journal. 747 (1): 29. arXiv:1201.1294. Bibcode:2012ApJ...747...29R. doi:10.1088/0004-637X/747/1/29. ISSN 0004-637X.
  19. ^ Okabe, Taizo; Oguri, Masamune; Peirani, Sébastien; Suto, Yasushi; Dubois, Yohan; Pichon, Christophe; Kitayama, Tetsu; Sasaki, Shin; Nishimichi, Takahiro (2020-08-01). "Shapes and alignments of dark matter haloes and their brightest cluster galaxies in 39 strong lensing clusters". Monthly Notices of the Royal Astronomical Society. 496 (3): 2591–2604. arXiv:2005.11469. Bibcode:2020MNRAS.496.2591O. doi:10.1093/mnras/staa1479. ISSN 0035-8711.
  20. ^ Bianconi, Matteo; Buscicchio, Riccardo; Smith, Graham P.; McGee, Sean L.; Haines, Chris P.; Finoguenov, Alexis; Babul, Arif (2021-04-01). "LoCuSS: The Splashback Radius of Massive Galaxy Clusters and Its Dependence on Cluster Merger History". The Astrophysical Journal. 911 (2): 136. arXiv:2010.05920. Bibcode:2021ApJ...911..136B. doi:10.3847/1538-4357/abebd7. ISSN 0004-637X.
  21. ^ a b Girardi, M.; Boschin, W.; Barrena, R. (2006-08-01). "Internal dynamics of the massive cluster Abell 697: a multiwavelength analysis". Astronomy and Astrophysics. 455 (1): 45–59. arXiv:astro-ph/0604599. Bibcode:2006A&A...455...45G. doi:10.1051/0004-6361:20065022. ISSN 0004-6361.
  22. ^ Koulouridis, E.; Gkini, A.; Drigga, E. (2024-04-01). "AGNs in massive galaxy clusters: Role of galaxy merging, infalling groups, cluster mass, and dynamical state". Astronomy and Astrophysics. 684: A111. arXiv:2401.05747. Bibcode:2024A&A...684A.111K. doi:10.1051/0004-6361/202348212. ISSN 0004-6361.
  23. ^ Cavagnolo, Kenneth W.; Donahue, Megan; Voit, G. Mark; Sun, Ming (2008-08-01). "Bandpass Dependence of X-Ray Temperatures in Galaxy Clusters". The Astrophysical Journal. 682 (2): 821–834. arXiv:0803.3858. Bibcode:2008ApJ...682..821C. doi:10.1086/588630. ISSN 0004-637X.
  24. ^ Osinga, E.; van Weeren, R. J.; Andrade-Santos, F.; Rudnick, L.; Bonafede, A.; Clarke, T.; Duncan, K.; Giacintucci, S.; Mroczkowski, T.; Röttgering, H. J. A. (2022-09-01). "The detection of cluster magnetic fields via radio source depolarisation". Astronomy and Astrophysics. 665: A71. arXiv:2207.09717. Bibcode:2022A&A...665A..71O. doi:10.1051/0004-6361/202243526. ISSN 0004-6361.
  25. ^ Biffi, Veronica; ZuHone, John A.; Mroczkowski, Tony; Bulbul, Esra; Forman, William (2022-07-01). "The velocity structure of the intracluster medium during a major merger: Simulated microcalorimeter observations". Astronomy and Astrophysics. 663: A76. arXiv:2201.12370. Bibcode:2022A&A...663A..76B. doi:10.1051/0004-6361/202142764. ISSN 0004-6361.
  26. ^ Macario, G.; Venturi, T.; Intema, H. T.; Dallacasa, D.; Brunetti, G.; Cassano, R.; Giacintucci, S.; Ferrari, C.; Ishwara-Chandra, C. H.; Athreya, R. (2013-03-01). "153 MHz GMRT follow-up of steep-spectrum diffuse emission in galaxy clusters". Astronomy and Astrophysics. 551: A141. arXiv:1302.0648. Bibcode:2013A&A...551A.141M. doi:10.1051/0004-6361/201220667. ISSN 0004-6361.
  27. ^ Macario, G.; Venturi, T.; Dallacasa, D.; Giacintucci, S.; Brunetti, G.; Cassano, R.; Ishwara-Chandra, C. H.; Athreya, R. (2011-01-01). "GMRT 150 MHz follow up of diffuse steep spectrum radio emission in galaxy clusters". Memorie della Societa Astronomica Italiana. 82: 557. arXiv:1102.0465. Bibcode:2011MmSAI..82..557M. ISSN 0037-8720.
  28. ^ Macario, G.; Venturi, T.; Brunetti, G.; Dallacasa, D.; Giacintucci, S.; Cassano, R.; Bardelli, S.; Athreya, R. (2010-07-01). "The very steep spectrum radio halo in Abell 697". Astronomy and Astrophysics. 517: A43. arXiv:1004.1515. Bibcode:2010A&A...517A..43M. doi:10.1051/0004-6361/201014109. ISSN 0004-6361.
  29. ^ Castignani, G.; Jablonka, P.; Combes, F.; Haines, C. P.; Rawle, T.; Jauzac, M.; Egami, E.; Krips, M.; Spérone-Longin, D.; Arnaud, M.; García-Burillo, S.; Schinnerer, E.; Bigiel, F. (2020-08-01). "Molecular gas and star formation activity in luminous infrared galaxies in clusters at intermediate redshifts". Astronomy and Astrophysics. 640: A64. arXiv:2002.03818. Bibcode:2020A&A...640A..64C. doi:10.1051/0004-6361/201937190. ISSN 0004-6361.
  30. ^ Meena, Ashish Kumar; Bagla, Jasjeet Singh (2021-05-01). "Exotic image formation in strong gravitational lensing by clusters of galaxies - I. Cross-section". Monthly Notices of the Royal Astronomical Society. 503 (2): 2097–2107. arXiv:2009.13418. Bibcode:2021MNRAS.503.2097M. doi:10.1093/mnras/stab577. ISSN 0035-8711.
  31. ^ Cibirka, Nathália; Acebron, Ana; Zitrin, Adi; Coe, Dan; Agulli, Irene; Andrade-Santos, Felipe; Bradač, Maruša; Frye, Brenda; Livermore, Rachael C.; Mahler, Guillaume; Salmon, Brett; Sharon, Keren; Trenti, Michele; Umetsu, Keiichi; Avila, Roberto (2018-08-01). "RELICS: Strong Lensing Analysis of the Galaxy Clusters Abell S295, Abell 697, MACS J0025.4-1222, and MACS J0159.8-0849". The Astrophysical Journal. 863 (2): 145. arXiv:1803.09557. Bibcode:2018ApJ...863..145C. doi:10.3847/1538-4357/aad2d3. ISSN 0004-637X.
  32. ^ Fox, Carter; Mahler, Guillaume; Sharon, Keren; Remolina González, Juan D. (2022-03-01). "The Strongest Cluster Lenses: An Analysis of the Relation between Strong Gravitational Lensing Strength and the Physical Properties of Galaxy Clusters". The Astrophysical Journal. 928 (1): 87. arXiv:2104.05585. Bibcode:2022ApJ...928...87F. doi:10.3847/1538-4357/ac5024. ISSN 0004-637X.