User:DavidAnstiss/Paraphaeosphaeria minitans

DavidAnstiss/Paraphaeosphaeria minitans
Scientific classification
Kingdom:
Division:
Class:
Order:
Family:
Genus:
Paraphaeosphaeria

O.E.Erikss. (1967)
Species:
minitans

(W.A. Campb.) Verkley, Göker & Stielow, in Verkley, Dukik, Renfurm, Göker & Stielow, Persoonia 32: 44 (2014)
Synonyms
  • Coniothyrium minitans W.A. Campb., Mycologia 39 (2): 191 (1947)[2]
  • Paraconiothyrium minitans (W.A. Campb.) Verkley, in Verkley, da Silva, Wicklow & Crous, Stud. Mycol. 50 (2): 332 (2004)[3]

Paraphaeosphaeria minitans is a fungal. Under its more commonly known synonym Coniothyrium minitans, it has been used as a biocontrol agent against various Sclerotinia sp. including plant pathogenic Sclerotinia sclerotiorum (Ram et al., 2018).(need to find article)

Taxonomy edit

The species epithet of minitans is derived from the Latin word minitor meaning threatening.[4]

Coniothyrium minitans was initially published by mycologist William A. Campbell in 1947,[2][5]

Then in 2004 it was renamed Paraconiothyrium minitans (W.A. Campb.) Verkley,[3] before it was renamed Paraphaeosphaeria minitans in 2014.[6][7] Although it is often still commonly referred to as Coniothyrium minitans.[8][9][10] Coniothyrium minitans is also called the homotypic synonym of Paraconiothyrium minitans.[11]

History edit

Coniothyrium minitans was originally isolated from plant pathogen Sclerotinia sclerotiorum (Lib.) De Bary sclerotia (a compact mass of hardened fungal mycelium containing the food reserves) that was colonizing potato stems in Scotland in the United Kingdom.[2][12][8]


Coniothyrium minitans (synonym: Paraconiothyrium minitans [Verkley et al. 2004],[3]) is an effective biocontrol agent of one of the most destructive soilborne plant pathogens, Sclerotinia sclerotiorum (Lib.) De Bary (Budge et al. 1995;[13] Jones and Stewart 2000;[14] Zeng et al. 2012).[15] C. minitans is an ecologically obligate mycoparasite that is highly efficient in colonizing S. sclerotiorum sclerotia with little effect on the surrounding microbial populations (Whipps and Gerlagh 1992;[16] Whipps et al. 2008).[17] C. minitans can significantly reduce sclerotial inoculum and, also, inhibit the production of apothecia (Jones et al. 2004).[18]

It is congeneric with Paraphaeosphaeria sporulosa, a worldwide soilborne fungus with biocontrol abililty.[11]

It can parasitize the sclerotia of Sclerotinia spp. and produce anti-fungal substances that inhibit host growth.[16]

Biocontrol agent edit

Various potential mycoparasites of S. sclerotiorum sclerotia were tested to determine their efficacy as bio-control agents of that species.[19] Coniothyrium minitans was tested because it had been observed that when it was abundant in the phyllosphere of oilseed rape, S. sclerotiorum was suppressed (Whipps et al. 1993a).[20] In fact, among several potential antagonists, C. minitans and Trichoderma virens were the most active (Whipps and Budge 1990).[21] C. minitans is the most successful agent against Sclerotinia species (Whipps and Gerlagh 1992;[16] Lewis et al. 1995), however, because it attacks the sclerotia and also can grow inside the hyphae and thus follow the host into plant tissue (Huang and Hoes 1976;[22] Huang 1978; (N E E D ) Trutmann et al. 1982;[23] Phillips and Price 1983;[24] Tu 1984;[25] Huang and Kokko 1988;[26] Whipps and Gerlagh 1992;[16] Whipps et al. 1993).[20]

The strain C. minitans S. sclerotiorum and C. minitans has been used extensively to control sclerotinia diseases of several vegetable crops (Ashraf and Zuhaib 2013;[12] Sun et al. 2017).[8]

Despite the successful development of C. minitans as a biocontrol agent for commercial applications, various biological and environmental factors are known to affect its efficacy and consistency (Nicot et al. 2019;[7] Whipps et al. 2008;[17] Zhao et al. 2020).[11] Abiotic factors such as temperature, pH, light, and water potential are known to affect key biological attributes such as spore germination, hyphal extension, and pycnidial production in C. minitans isolates. This can impact the efficacy of C. minitans to successfully colonize and degrade the sclerotia of the host S. sclerotiorum (Jones et al. 2011;[27] McQuilken et al. 1997).[28]

Paraphaeosphaeria minitans, which is distributed worldwide, is a pathogen of Sclerotinia sclerotiorum a plant pathogen fungus that can cause a disease called 'white mold'.[2][9] It is used as a commercial biocontrol agent for sclerotinia stem rot. Applications of Coniothyrium minitans are recommended to occur three months before S. sclerotiorum development and be incorporated into the soil.[29][30] Correct use of Coniothyrium minitans can reduce S. sclerotiorum by 95% and sclerotinia stem rot 10 to 70%.[31][15][32] It can be also used to attack Sclerotinia sclerotiorum in sunflowers,[33][34] and lettuce.[35][13][36]

The mycoparasitic fungus Paraphaeosphaeria minitans (formerly Coniothyrium minitans),[7] is increasingly used by farmers to reduce soilborne inoculum of Sclerotinia sclerotiorum. In France,[7]

biological control of Sclerotinia sclerotiorum in (witloof) chicory culture.[37]

Efficiency of isolates of Coniothyrium minitans as mycoparasites of Sclerotinia sclerotiorum, Sclerotium cepivorum and Botrytis cinerea on tomato stem pieces. [38]

Particularly intense studies were conducted with the parasitic fungus Coniothyrium minitans (Huang and Hoes 1976;[22] Turner and Tribe 1976;[39] McQuilken et al. 1995;[40] Zeng et al. 2012b).[15]

It penetrates into the target pest by making small pores or lacerate the surface of target pest by producing enzymes like chitinase,[41] and glucanase then, breaches into the sub-cortex and medulla producing fruiting bodies and causes the pest cells to shrink due to osmosis. This fungus is used to protect economically viable crops like oil seeds,[40][42] celery,[43] beans ([Phaseolus vulgaris]] L.),[44] peas, lettuce etc.[9]

lettuce drop,[45] also affecting glasshouse lettuce,[46] caused by Sclerotinia minor, eight fungal isolates (Trichoderma hamatum, Trichoderma virens, Coniothyrium minitans, Clonostachys rosea and Trichoderma rossicum were evaluated. Commercial formulations of both C. minitans and T. hamatum applied as transplant treatments, solid substrate soil amendments or as a spore drench gave consistent disease control and are currently being developed further.[47]

stem rot of rapeseed (Brassica napus),[48]

It also grows well on media such as on potato dextrose agar (PDA) and wheat kernel and forms pycnidia. The pycnidia are initially white, and darken with time. Conidia are dispersed with water droplets from the pycnidia. C. minitans synthesizes melanin, which accumulates on the pycnidia, conidia, and the aging hyphae, lending a dark appearance to the entire mature colony. Fungi require melanin to tolerate environmental stress, such as UV irradiation and presence of oxidants.[48]

Biological control of clover rot on red clover (a green manure crop).[49] and Sclerotinia trifoliorum Erikss., the causal agent of clover rot.[50]

Target plants for treatment with C. minitans are high value crops as peanuts, sunflowers, lettuce, cucumber, beans and oilseed rape (EFSA 2016).[51]

By spraying a C. minitans spore suspension on bean plants during blooming, the incidence of white mold was reduced by 56% (Huang et al. 2000).[52] Also, incorporation of C. minitans in the top soil before planting of soybean reduced the disease severity index (DSI) by 68% and the number of sclerotia in the soil by 95.3% (Zeng et al. 2012a).Cite error: A <ref> tag is missing the closing </ref> (see the help page).

The hyperparasite penetrated the walls of the rind cells by means of physical pressure and destroyed the cell contents. Penetration of medullary hyphae was by enzymic lysis and physical pressure; there was evidence to suggest that the hyperparasite may coil around the host cells before inserting infection hyphae.[24]

Coniothyrium minitans is a sclerotial parasite of Sclerotinia sclerotiorum and its related species, including Sclerotinia minor, Sclerotinia cepivorum, and Sclerotinia trifoliorum.[53][54]


Management of sclerotinia blight of peanut with the biological control agent Coniothyrium minitans.[55]

commercial products of C. minitans have been developed.[56]

It is sold under the registered name Contans® (Coniothyrium minitans).[44][57]

Coniothyrium minitans has also been used to parasitize the sclerotia of several Sclerotinia species, including Sclerotina cepivorum (whipps and ger 1992)[16] and some Botrytis species. PCR has been used to identify isolates from the mycoparasite to be used as biological agents.[58] soil borne fungus[58]

Among them, Gliocladium virens and C. minitans have shown practical potential for biological control of S. sclerotiorum (Fernando et al., 2004).[30]

Coniothyrium minitans is a mycoparasite of Sclerotinia spp. and certain species in other related genera (Campbell, 1947;[2] Li et al., 2006),[53] and it parasitizes both the hypha and sclerotia of Sclerotinia sclerotiorum. C. minitans has been proved to be able to control Sclerotinia based rots of vegetable crops, stem rot of rapeseed (Brassica napus), and head rot of sunflower (Huang, 1981;[59] Whipps and Gerlagh, 1992).[16] C. minitans has been developed as a commercial biological agent and been widely used in the United States, European Union, and in China. C. minitans is a coelomycete, which grows on sclerotia, and produces pycnidia with numerous conidia on or in the sclerotia (Whipps et al., 2008).[17] It also grows well on media such as on potato dextrose agar (PDA) and wheat kernel and forms pycnidia. The pycnidia are initially white, and darken with time. Conidia are dispersed with water droplets from the pycnidia. C. minitans synthesizes melanin, which accumulates on the pycnidia, conidia, and the aging hyphae, lending a dark appearance to the entire mature colony.[48] C. minitans does not form an appressorium for penetrating the host hypha of Sclerotinia sclerotiorum.[26]

Disruption of heat shock factor 1 reduces the formation of conidia and thermotolerance in the mycoparasitic fungus Coniothyrium minitans.[60]

The genome,[61] and transcriptome sequencing of Coniothyrium minitans was recorded in 2020.[11]

A total of 11 437 predicted genes and proteins were annotated, and 30.8 % of the blast hits matched proteins encoded by another member of the Pleosporales, Paraphaeosphaeria sporulosa, a worldwide soilborne fungus with biocontrol ability.[11]

Degradation of oxalic acid by the mycoparasite Coniothyrium minitans plays an important role in interacting with Sclerotinia sclerotiorum [62] Susceptibility of Sclerotinia sclerotiorum strains different in oxalate production to infection by the mycoparasite Coniothyrium minitans.[63]

Coniothyrium minitans was transformed with the hygromycin B resistance gene to improve the infection rates of Sclerotinia sclerotiorum.[64]

Strains of the fungus has been studied for potential for inoculum production in liquid culture.[65]

Compatibility of Coniothyrium minitans with compound fertilizer in suppression of Sclerotinia sclerotiorum[66]

Separation of the metabolic products of Coniothyrium minitans against rice infecting bacteria Xanthomonas oryzae pv. oryzae.[67]

Distribution edit

C. minitans has been isolated from soil samples from 11 countries for the first time, bringing the world occurrence to 29 countries in total, on all continents except South America.[68] The list includes Canada,[69] Iran,[70] Egypt,[44] China,[71] Australia,[72] New Zealand.[14][73]

See also edit

References edit

  1. ^ "NCBI Taxonomy Browser entry for Paraphaeosphaeria".
  2. ^ a b c d e Campbell, W.A. (1947). "A new species of Coniothyrium parasitic on sclerotia". Mycologia. 39 (2): 190-195.
  3. ^ a b c Verkley, G.; Silva, M.; Wicklow, D. T.; Crous, P. (2004). "Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species". Stud. Mycol. 50: 323-335.
  4. ^ "minitans - WordSense Dictionary". www.wordsense.eu. Retrieved 5 August 2023.
  5. ^ "Campbell, William Andrew | International Plant Names Index". www.ipni.org. Retrieved 7 August 2023.
  6. ^ Verkley, G.J.M.; Dukik, K.; Renfurm, R.; Göker, M.; Stielow, J.B. (2014). "Novel genera and species of coniothyrium-like fungi in Montagnulaceae (Ascomycota)". Persoonia - Molecular Phylogeny and Evolution of Fungi. 32: 25-51. doi:10.3767/003158514X679191.
  7. ^ a b c d Nicot, Philippe C.; Avril, Félicie; Duffaud, Magali; Leyronas, Christel; Troulet, Claire; Villeneuve, François; Bardin, Marc (2019). "Differential susceptibility to the mycoparasite Paraphaeosphaeria minitans among Sclerotinia sclerotiorum isolates". Tropical Plant Pathology. 44: 82–93.
  8. ^ a b c Sun, X.; Zhao, Y.; Jia, J.; Xie, J.; Cheng, J.; Liu, H.; Jiang, D.; Fu, Y. (2017). "Uninterrupted expression of CmSIT1 in a sclerotial parasite Coniothyrium minitans leads to reduced growth and enhanced antifungal ability". Front. Microbiol. 8: 2208. doi:10.3389/fmicb.2017.02208.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  9. ^ a b c Arakere, Udayashankar C.; Konappa, Narasimhamurthy (2022). "12.9 Coniothyrium minitans as biopesticide". Biopesticides.
  10. ^ Albert, Daphné; Dumonceaux, Tim; Carisse, Odile; Beaulieu, Carole; Filion, Martin (June 2022). "Combining Desirable Traits for a Good Biocontrol Strategy against Sclerotinia sclerotiorum". Microorganisms. 10 (6): 1189. doi:10.3390/microorganisms10061189. PMC 9228387. PMID 35744707.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  11. ^ a b c d e Zhao, Huizhang; Zhou, Ting; Xie, Jiatao; Cheng, Jiasen; Chen, Tao; Jiang, Daohong; Fu, Yanping (March 2020). "Mycoparasitism illuminated by genome and transcriptome sequencing of Coniothyrium minitans, an important biocontrol fungus of the plant pathogen Sclerotinia sclerotiorum". Microb. Genom. 6 (3). doi:10.1099/mgen.0.000345. PMC 7200069. PMID 32141811.
  12. ^ a b Ashraf, S.; Zuhaib, M. (2013). Fungal biodiversity: A potential tool in plant disease management. Dordrecht, The Netherlands.: Springer.
  13. ^ a b Budge, S.P.; McQuilken, M.P.; Fenion, J.S.; Whipps, J.M. (1995). "Use of Coniothyrium minitans and Gliocladium virens for biological control of Sclerotinia sclerotiorum in glasshouse lettuce". Biol. Control. 5: 513–522.
  14. ^ a b Jones, E. Eirian; Stewart, Alison (2000). "Selection of mycoparasites of sclerotia of Sclerotinia sclerotiorum isolated from New Zealand soils". N. Z. J. Crop Hortic. Sci. 28: 105-114. doi:10.1080/01140671.2000.951.
  15. ^ a b c Zeng, W.; Wang, D.; Kirk, W.; Hao, J. (2012). "Use of Coniothyrium minitans and other microorganisms for reducing Sclerotinia sclerotiorum". Biol. Control. 60: 225–232.
  16. ^ a b c d e f Whipps, J. M.; Gerlagh, M. (1992). "Biology of Coniothyrium minitans and its potential for use in disease biocontrol". Mycol. Res. 96: 897–907. doi:10.1016/S0953-7562(09)80588-1.
  17. ^ a b c Whipps, J. M.; Sreenivasaprasad, S.; Muthumeenakshi, S.; Rogers, C. W.; Challen, M. P. (2008). "Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism". Eur. J. Plant Pathol. 121: 323–330. doi:10.1007/s10658-007-9238-1.
  18. ^ Jones, E. Eirian; Clarkson, J.P.; Mead, A.; Whipps, J.M. (2004). "Effect of inoculum type and timing of application of Coniothyrium minitans on Sclerotinia sclerotiorum: Influence on apothecial production". Plant Pathol. 53: 621-628. doi:10.1111/j.1365-3059.2004.01068.x.
  19. ^ Gams, Walter; Põldmaa, Kadri (2004). "Control Of Pathogenic Sclerotial Ascomycetes". In Mueller, Gregory M.; Bills, Gerald F.; Foster, Mercedes S. (eds.). Biodiversity of Fungi. ISBN 978-0-12-509551-8.
  20. ^ a b Whipps, J.M.; Budge, S.P.; Mitchell, S.J. (1993). "Observations on sclerotial mycoparasites of Sclerotinia sclerotiorum". Mycol. Res. 97: 697–700.
  21. ^ Whipps, J.M.; Budge, S.P. (July 1990). "Screening for sclerotial mycoparasites of Sclerotinia sclerotiorum". Mycological Research. 94 (5): 607–612. doi:10.1016/S0953-7562(09)80660-6.
  22. ^ a b Huang, Hung Chang; Hoes, J.A . (1976). "Penetration and infection of Sclerotinia sclerotiorum by 'Coniothyrium minitans". Can. J. Bot. 54: 406–410.
  23. ^ Trutmann, Peter; Keane, Philip; Merriman, Peter R. (June 1982). "Biological control of Sclerotinia sclerotiorum on aerial parts of plants by the hyperparasite Coniothyrium minitans". Mycological Research. 78 (3): 521–529. doi:10.1016/S0007-1536(82)80160-5.
  24. ^ a b Phillips, A. J. L.; Price, K. (July 1983). "Structural Aspects of the Parasitism of Sclerotia of Sclerotinia sclerotiorum (Lib.) de Bary by Coniothyrium minitans Campb". doi:10.1111/j.1439-0434.1983.tb00537.x. {{cite journal}}: Cite journal requires |journal= (help)
  25. ^ Tu, J.C. (1984). "Mycoparasitism by Coniothyrium minitans and its effects on sclerotia germination". J. Phytopathol. 109: 261–268.
  26. ^ a b Huang, Hung Chang; Kokko, E. G. (1988). "Penetration of hyphae of Sclerotinia sclerotiorum by Coniothyrium minitans without the formation of appressoria". J. Phytopathol. 123: 133–139. doi:10.1111/j.1439-0434.1988.tb04460.x.
  27. ^ Jones, E. Eirian; Stewart, Alison; Whipps, John M. (September 2011). "Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia". Fungal Biology. 115 (9): 871–881. doi:10.1016/j.funbio.2011.06.016.
  28. ^ McQuilken, M.P.; Budge, S.P.; Whipps, J.M. (1997). "Effects of culture media and environmental factors on conidial germination, pycnidial production and hyphal extension of Coniothyrium minitans". Mycol. Res. 101: 11-17. doi:10.1017/S09537562960020.
  29. ^ "CDMS Home". www.cdms.net. Retrieved 29 April 2020.
  30. ^ a b Tewari, Sakshi; Arora, Naveen Kumar; Miransari, Mohammad (2016). "Alleviation of biotic stresses with PGPR". In Miransari, Mohammad (ed.). Abiotic and Biotic Stresses in Soybean Production Soybean Production (Volume 1 ed.). pp. 131–155.
  31. ^ Boland, G.J. (May 1997). "Stability Analysis for Evaluating the Influence of Environment on Chemical and Biological Control of White Mold (Sclerotinia sclerotiorum) of Bean". Biological Control. 9 (1): 7–14. doi:10.1006/bcon.1997.0515. ISSN 1049-9644.
  32. ^ dos Santos Gomes, Ana C.; da Silva, Ronivaldo R.; Ceresini, Paulo C. (2021). "Biofungicides: An Eco-Friendly Approach for Plant Disease Management". In Zaragoza, Óscar; Casadevall, Arturo (eds.). Encyclopedia of Mycology. Elsevier. pp. 641–649. ISBN 978-0-323-85180-0.
  33. ^ McLaren, D.L.; Huang, H.C.; Kozub, G.C.; Rimmer, S.R. (1994). "Biological control of sclerotinia wilt of sunflower with Talaromyces flavus and Coniothyrium minitans". Plant Dis. 78: 231–235. doi:10.1094/PD-78-0231. {{cite journal}}: Check |doi= value (help)
  34. ^ Huang, H.C. (1977). "Importance of Coniothyrium minitans in survival of sclerotia of Sclerotinia sclerotiorum in wilted sunflower". Canadian Journal of Botany.
  35. ^ McQuilken, M.P.; Gemmell, J.; Hill, K.A.; Whipps, J.M. (2003). "Production of macrosphelide A by the mycoparasite Coniothyrium minitans". FEMS Microbiology Ecology. 219: 27–31.
  36. ^ Rani, Mamta; Tyagi, Kriti; Jha, Gopaljee (2020). "Advancements in plant disease control strategies". In Tuteja, Narendra; Tuteja, Renu; Saifi, Shabnam K. (eds.). Advancement in Crop Improvement Techniques. pp. 141–157. ISBN 978-0-12-818581-0.
  37. ^ Benigni, M.; Bompeix, G. (2010). "Chemical and biological control of Sclerotinia sclerotiorum in witloof chicory culture". Pest Manag. Sci. 66: 1332–1336. doi:10.1002/ps.2019.
  38. ^ Gerlagh, M.; Whipps, J.M.; Budge, S.P.; Goossen van de Geijn, H.M. (1996). "Efficiency of isolates of Coniothyrium minitans as mycoparasites of Sclerotinia sclerotiorum, Sclerotium cepivorum and Botrytis cinerea on tomato stem pieces". European Journal of Plant Pathology,. 102: 787–793.{{cite journal}}: CS1 maint: extra punctuation (link)
  39. ^ Turner, G.J.; Tribe, H.T. (1976). "On Coniothyrium minitans and its parasitism of Sclerotinia species". Trans Br. Mycol. Soc. 66: 97–105.
  40. ^ a b McQuilken, M.P.; Mitchell, S.J.; Budge, S.P.; Whipps, J.M.; Fenlon, J.S.; Archer, S.A. (1995). "Effect of Coniothyrium minitans on sclerotial survival and apothecial production of Sclerotinia sclerotiorum in field-grown oilseed rape". Plant Pathol. 44: 883–896.
  41. ^ Hu, Y.; Li, G.; Yang, L. (2009). "Characterization of factors affecting enzymatic activity of chitinase produced by mycoparasite Coniothyrium minitans". Chin. J. Appl. Environ. Biol. 2010: 226–229.
  42. ^ Yang, L.; Miao, H.J.; Li, G.Q.; Yin, L.M.; Huang, H-C. (2007). "Survival of the mycoparasite Coniothyrium minitans on flower petals of oilseed rape under field conditions in central China". Biological Control. 40: 179–186. doi:10.1016/j.biocontrol.2006.10.002. {{cite journal}}: Check |doi= value (help)
  43. ^ Budge, S.P.; Whipps, J.M. (1991). "Glasshouse trials of Coniothyrium minitans and Trichoderma species for the biological control of Sclerotinia sclerotiorum in celery and lettuce". Plant Pathol. 40: 59–66.
  44. ^ a b c Elsheshtawi, Mohamed; Elkhaky, Maged T.; Sayed, Shaban R.; Bahkali, Ali.H.; Mohammed, Arif A.; Gambhir, Dikshit; Mansour, Aref S.; Elgorbana, Abdallah M. (2017). "Integrated control of white rot disease on beans caused by Sclerotinia sclerotiorum using Contans and reduced fungicides application". Saudi J. Biol. Sci. 24: 405–409. doi:10.1016/j.sjbs.2016.01.038.
  45. ^ Chitrampalam, P.; Cox, C.A.; Turini, T.A.; Pryor, B.M. (November 2010). "Efficacy of Coniothyrium minitans on lettuce drop caused by Sclerotinia minor in desert agroecosystem". Biological Control. 55 (2): 92–96. doi:10.1016/j.biocontrol.2010.07.003.
  46. ^ Budge, S.P.; Whipps, J.M. (2001). "Potential for integrated control of Sclerotinia sclerotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application". Phytopathology. 91: 221–227.
  47. ^ Rabeendran, N.; Jones, E.E.; Moot, D.J.; Stewart, A. (December 2006). "Biocontrol of Sclerotinia lettuce drop by Coniothyrium minitans and Trichoderma hamatum". Biological Control. 39 (3): 352–362. doi:10.1016/j.biocontrol.2006.06.004.
  48. ^ a b c Luo, Chenwei; Zhao, Huizhang; Yang, Xiaoxiang; Qiang, Cuicui; Cheng, Jiasen; Xie, Jiatao; Chen, Tao; Jiang, Daohong; Fu, Yanping (8 November 2018). "Functional Analysis of the Melanin-Associated Gene CmMR1 in Coniothyrium minitans". Front. Microbiol. Sec. Fungi and Their Interactions. 9. doi:10.3389/fmicb.2018.02658.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  49. ^ Öhberg, H.; Bång, U. (2010). "Biological control of clover rot on red clover by Coniothyrium minitans under natural and controlled climatic conditions". Biocontrol Science and Technology. 20: 25–36.
  50. ^ Tribe, H.T. (December 1957). "On the parasitism of Sclerotinia trifoliorum by Coniothyrium minitans". Transactions of the British Mycological Society. 40 (4): 489–499. doi:10.1016/S0007-1536(57)80055-2.
  51. ^ EFSA (European Food Safety Authority) (2016). "Conclusion on the peer review of the pesticide risk assessment of the active substance Coniothyrium minitans Strain CON/M/91-08". EFSA J. (16 pp). 14 (4517).
  52. ^ Huang, H.C.; Bremer, E.; Hynes, R.K.; Ericson, R.S. (2000). "Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum". Biol. Control. 18: 270–276.
  53. ^ a b Li, G.; Huang, H.; Miao, H.; Erickson, R.S.; Jiang, D.; Xiao, Y. (2006). "Biological control of sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans". Eur. J. Plant Pathol. 114: 345–355. doi:10.1007/s10658-005-2232-6.
  54. ^ Smith, S.N.; Prince, M.; Whipps, J.M. (2008). "Characterization of Sclerotinia and mycoparasite Coniothyrium minitans interaction by microscale co-culture". Lett. Appl. Microbiol. 47: 128–133. doi:10.1111/j.1472-765X.2008.02392.x.
  55. ^ Partridge, D.E.; Sutton, T.B.; Jordan, D.L.; Curtis, V.L.; Bailey, J.E. (2006). "Management of sclerotinia blight of peanut with the biological control agent Coniothyrium minitans". Plant Disease. 90: 957–963. doi:10.1094/PD-90-0957.
  56. ^ de Vrije, T.; Antoine, N.; Buitelaar, R.M.; Bruckner, S.; Dissevelt, M.; Durand, A.; Gerlagh, M.; Jones, E.; Lüth, P.; Oostra, W.; Ravensberg, J.; Renaud, R.; Rinzema, A.; Weber, F.; Whipps, J. (2001). "The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing". Appl. Microbiol. Biotechnol. 56: 58–68. doi:10.1007/s002530100678.
  57. ^ D’Ambrosio, Giovanni; Cariddi, Corrado; Mannerucci, Francesco; Bruno, Giovanni Luigi (2022). "In Vitro Screening of New Biological Limiters against Some of the Main Soil-Borne Phytopathogens". Sustainability. 14 (5): 2693. doi:10.3390/su14052693.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  58. ^ a b Goldstein, Alan L.; Carpenter, Margaret A.; Crowhurst, Ross N.; Stewart, Alison (Jan. - Feb., 2000). "Identification of Coniothyrium minitans Isolates Using PCR Amplification of a Dispersed Repetitive Element". Mycologia. 92 (1): 46–53. doi:10.2307/3761449. {{cite journal}}: Check date values in: |date= (help)
  59. ^ Huang, Hung Chang (1981). "Distribution of Coniothyrium minitans in Manitoba sunflower fields". Can. J. Plant Pathol. 3: 219–222. doi:10.1080/07060668109501352.
  60. ^ Hamid, M.I.; Zeng, F; Cheng, J.; Jiang, D.; Fu, Y. (2013). "Disruption of heat shock factor 1 reduces the formation of conidia and thermotolerance in the mycoparasitic fungus Coniothyrium minitans". Fungal Genet. Biol. 53: 42–49. doi:10.1016/j.fgb.2012.12.002.
  61. ^ Patel, D.; Shittu, T.A.; Baroncelli, R.; Muthumeenakshi, S.; Osborne, T.H.; Janganan, T.K.; Sreenivasaprasad, S. (February 2021). "Genome Sequence of the Biocontrol Agent Coniothyrium minitans Conio (IMI 134523)". Mol Plant Microbe Interact. 34 (2): 222-225. doi:10.1094/MPMI-05-20-0124-A. PMID 33118857.
  62. ^ Zeng, Li-Mei; Zhang, Jing; Han, Yong-Chao; Yang, Long; Wu, Ming-de; Jiang, Dao-Hong; Chen, Weidong; Li, Guo-Qing (August 2014). "Degradation of oxalic acid by the mycoparasite Coniothyrium minitans plays an important role in interacting with Sclerotinia sclerotiorum". Environmental Microbiology. 16 (8): 2591–2610. doi:10.1111/1462-2920.12409.
  63. ^ Huang, Y.B.; Xie, X.L.; Yang, L.; Zhang, J.; Li, G.Q.; Jiang, D.H. (2011). "Susceptibility of Sclerotinia sclerotiorum strains different in oxalate production to infection by the mycoparasite Coniothyrium minitans". World J. Microbiol. Biotechnol. 27: 2799–2805.
  64. ^ Jones, E. Eirian; Stewart, Alison; Whipps, J.M. (2003). "Use of Coniothyrium minitans transformed with the hygromycin B resistance gene to study survival and infection of Sclerotinia sclerotiorum sclerotia in soil". Mycological Research. 10 (3): 267-276. doi:10.1017/S0953756203007457. ISSN 0953-7562. {{cite journal}}: Check |issn= value (help)
  65. ^ Cheng, Jiasen; Jiang, Daohong; Yi, Xianhong; Fu, Yanping; Li, Guoqing; Whipps, John M. (10 October 2003). "Production, survival and efficacy of Coniothyrium minitans conidia produced in shaken liquid culture". FEMS Microbiol Lett . 227 (1): 127-31. doi:10.1016/S0378-1097(03)00666-9. PMID 14568158.
  66. ^ Yang, Long; Li, Guoqing; Zhang, Jing; Jiang, Daohong; Chen, Weidong (November 2011). "Compatibility of Coniothyrium minitans with compound fertilizer in suppression of Sclerotinia sclerotiorum". Biological Control. 59 (2): 221–227. doi:10.1016/j.biocontrol.2011.07.002.
  67. ^ Wang, H.; Hu, X.; Jiang, D. (2009). "Separation of the metabolic product of Coniothyrium minitans against Xanthomonas oryzae pv. oryzae". J. Huazhong Agr. Univ. 28: 148–150.
  68. ^ Sandys-Winsch, C.; Whipps, J.M.; Gerlagh, M.; Kruse, M. (1993). "World distribution of the sclerotial mycoparasite Coniothyrium minitans". Mycological Research. 97: 1175–1178. doi:10.1016/S0953-7562(09)81280-X.
  69. ^ Huang, Hung Chang.; Erickson, R.S. (2002). "Overwintering of Coniothyrium minitans, a mycoparasite of Sclerotinia sclerotiorum, on the Canadian prairies". Australasian Plant Pathology. 31: 291–293.
  70. ^ Bakhshi, Mounes; Zare, Rasoul; Ershad, Djafar (2022). "A detailed account on the statistics of the Fungi and fungus-like taxa of Iran". Mycologia Iranica (Journal of the Iranian Mycological Society). 9 (2): 1–96. doi:10.22043/MI.2023.360819.1244. ISSN 2382-9656.
  71. ^ Yang, Long; Li, Guo Qing; Long, Ya Qin; Hong, Guo Ping; Jiang, Dao Hong; Huang, Hung-Chang (October 2010). "Effects of soil temperature and moisture on survival of Coniothyrium minitans conidia in central China". Biological Control. 55 (1): 27–33. doi:10.1016/j.biocontrol.2010.06.010.
  72. ^ McCredie, T.A.; Sivasithamparam, K. (1985). "Fungi mycoparasitic on sclerotia of Sclerotinia sclerotiorum in some Western Australian soils". Transactions of the British Mycological Society. 84 (4): 736–739. doi:10.1016/S0007-1536(85)80133-9.
  73. ^ Pennycook, S.R.; Galloway, D.J. (2004). Checklist of New Zealand "fungi". Fungi of New Zealand. 1. Fungal Diversity Press.

Cite error: A list-defined reference named "Huang2000PPB" is not used in the content (see the help page).
Cite error: A list-defined reference named "Li2003a" is not used in the content (see the help page).
Cite error: A list-defined reference named "Li2005" is not used in the content (see the help page).
Cite error: A list-defined reference named "Tomprefa2011" is not used in the content (see the help page).

Cite error: A list-defined reference named "Zeng2012a" is not used in the content (see the help page).

External links edit

Other sources edit

  • Bitsadze N., Siebold M., Koopmann B., von Tiedemann A., 2015. Single and combined colonization of Sclerotinia sclerotiorum sclerotia by the fungal mycoparasites Coniothyrium minitans and Microsphaeropsis ochracea. Plant Pathol 64: 690-700.
  • Cheng, J. S., Jiang, D. H., Yi, X. H., Fu, Y. P., Li, G. Q., & Whipps, J. M. (2003). Production, survival and efficacy of Coniothyrium minitans conidia produced in shaken liquid culture. FEMS Microbiology Letters, 227, 127–131.
  • Dahiya, J. S., Singh, D., & Nigam, P. (1998). Characterisation of laccase produced by Coniothyrium minitans. Journal of Basic Microbiology, 38, 349–359.
  • Giczey G., Kerenyi Z., Fulop L., Hornok L. Expression of cmg1, an Exo- -1,3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism. Appl. Environ. Microbiol. 2001;67:865–871. doi: 10.1128/AEM.67.2.865-871.2001.
  • Gerlagh M., Goossen-van de Geijn H.M., Fokkema N.J., Vereijken P.F.G. Long-Term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum infected crops. Phytopathology. 1999;89:141–147. doi: 10.1094/PHYTO.1999.89.2.141.
  • Jones D., Johnson R.P.C. Ultra-structure of frozen, fractured and etched pycnidiospores of Coniothyrium minitans. Transactions Brit. Mycol. Soc. 1970;55:83–IN9. doi: 10.1016/S0007-1536(70)80098-5.
  • Jones, E. E., Stewart, A., & Whipps, J. M. (2003b). Use of Coniothyrium minitans transformed with the hygromycin B resistance gene to study survival and infection of Sclerotinia sclerotiorum sclerotia in soil. Mycological Research, 107, 267–276.
  • Jones E., Mead A., Whipps J. (2004) Effect of inoculum type and timing of application of Coniothyrium minitans on Sclerotinia sclerotiorum: control of sclerotinia disease in glasshouse lettuce. Plant Pathology 53:611–620
  • Kaur, J., Munshi, G. D., Singh, R. S., & Koch, E. (2005). Effect of carbon source on production of lytic enzymes by the sclerotial parasites Trichoderma atroviride and Coniothyrium minitans. Journal of Phytopathology, 153, 274–279.
  • Lu, Z. X., Laroche, A., & Huang, H. C. (2004). Segregation patterns for integration and expression of Coniothyrium minitans xylanase gene in Arabidopsis thaliana transformants. Botanical Bulletin of Academia Sinica, 45, 23–31.
  • McQuilken, M.P., Gemmell, J., Hill K.A, Whipps J.M., Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiology Ecology, Volume 219, 2003, 27–31.
  • Smith, S.N., Chohan, R., Armstrong, R.A. and Whipps, J.M. (1998) Hydrophobicity and surface electrostatic charge of conidia of the mycoparasite Coniothyrium minitans. Mycol. Res. 102, 243–249.
  • Smith, S.N., Armstrong, R.A., Barker, M., Bird, R.A., Chohan, R., Hartell, N.A. and Whipps, J.M. (1999) Determination of Coniothyrium minitans conidial and germling lectin avidity by flow cytometry and digital microscopy. Mycol. Res. 103, 1533–1539.
  • Wei, W., Zhu, W., Cheng, J., Xie, J., Li, B., Jiang, D., et al. (2016). Nox complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Sci. Rep. 6:24325. doi: 10.1038/srep24325
  • Zeng F, Gong X, Hamid MI, Fu Y, Jiatao X, et al. A fungal cell wall integrity-associated MAP kinase cascade in Coniothyrium minitans is required for conidiation and mycoparasitism. Fungal Genet. Biol. 2012;49:347–357. doi: 10.1016/j.fgb.2012.02.008.
  • Zeng L-M, Zhang J., Han Y-C, Yang L., Wu M-de, et al. Degradation of oxalic acid by the mycoparasite Coniothyrium minitans plays an important role in interacting with Sclerotinia sclerotiorum . Environ. Microbiol. 2014;16:2591–2610. doi: 10.1111/1462-2920.12409.
  • Zhao H., Zhou T., Xie J., Cheng J., Jiang D., Fu Y., Host Transcriptional Response of Sclerotinia sclerotiorum Induced by the Mycoparasite Coniothyrium minitans. Front Microbiol. 2020 Feb 11;11:183. doi: 10.3389/fmicb.2020.00183. PMID: 32117180

;Category:Fungal plant pathogens and diseases ;Category:Soybean diseases ;Category:Fungi described in 2014