Isotopes of thulium

(Redirected from Thulium-169)

Naturally occurring thulium (69Tm) is composed of one stable isotope, 169Tm (100% natural abundance). Thirty-nine radioisotopes have been characterized, with the most stable being 171Tm with a half-life of 1.92 years, 170Tm with a half-life of 128.6 days, 168Tm with a half-life of 93.1 days, and 167Tm with a half-life of 9.25 days. All of the remaining radioactive isotopes have half-lives that are less than 64 hours, and the majority of these have half-lives that are less than 2 minutes. This element also has 26 meta states, with the most stable being 164mTm (t1/2 5.1 minutes), 160mTm (t1/2 74.5 seconds) and 155mTm (t1/2 45 seconds).

Isotopes of thulium (69Tm)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
167Tm synth 9.25 d ε 167Er
168Tm synth 93.1 d β+ 168Er
169Tm 100% stable
170Tm synth 128.6 d β 170Yb
171Tm synth 1.92 y β 171Yb
Standard atomic weight Ar°(Tm)

The known isotopes of thulium range from 144Tm to 183Tm. The primary decay mode before the most abundant stable isotope, 169Tm, is electron capture, and the primary mode after is beta emission. The primary decay products before 169Tm are erbium isotopes, and the primary products after are ytterbium isotopes. All isotopes of thulium are either radioactive or, in the case of 169Tm, observationally stable, meaning that 169Tm is predicted to be radioactive but no actual decay has been observed.

List of isotopes

edit


Nuclide
[n 1]
Z N Isotopic mass (Da)[4]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Isotopic
abundance
Excitation energy[n 4]
144Tm 69 75 143.97621(43)# 2.3(9) μs p 143Er (10+)
145Tm 69 76 144.97039(21)# 3.17(20) μs p 144Er (11/2−)
146Tm 69 77 145.96666(22)# 155(20) ms p 145Er (1+)
146m1Tm 304(6) keV 73(7) ms p 145Er (5−)
146m2Tm 437(7) keV 200(3) ms p 145Er (10+)
147Tm 69 78 146.9613799(73) 0.58(3) s β+ (85%) 147Er 11/2−
p (15%) 146Er
147mTm 62(5) keV 360(40) μs p 146Er 3/2+
148Tm 69 79 147.958384(11) 0.7(2) s β+ 148Er (10+)
149Tm 69 80 148.95283(22)# 0.9(2) s β+ (99.74%) 149Er 11/2−
β+, p (0.26%) 148Ho
150Tm 69 81 149.95009(21)# 3# s β+ 150Er (1+)
150m1Tm[n 8] 140(140)# keV 2.20(6) s β+ (98.9%) 150Er (6−)
β+, p (1.1%) 149Ho
150m2Tm 811(140)# keV 5.2(3) ms IT 150m1Tm 10+#
151Tm 69 82 150.945494(21) 4.17(11) s β+ 151Er (11/2−)
151m1Tm 93(6) keV 6.6(20) s β+ 151Er (1/2+)
151m2Tm 2655.67(22) keV 451(34) ns IT 151Tm (27/2−)
152Tm 69 83 151.944476(58) 8.0(10) s β+ 152Er (2)−
152m1Tm[n 8] −100(250) keV 5.2(6) s β+ 152Er (9)+
152m2Tm 2455(250) keV 301(7) ns IT 152Tm (17+)
153Tm 69 84 152.942058(13) 1.48(1) s α (91%) 149Ho (11/2−)
β+ (9%) 153Er
153mTm 43.2(2) keV 2.5(2) s α (92%) 149Ho (1/2+)
β+ (8%) 153Er
154Tm 69 85 153.941570(15) 8.1(3) s β+ (54%) 154Er (2)−
α (46%) 150Ho
154mTm[n 8] 70(50) keV 3.30(7) s α (58%) 150Ho (9)+
β+ (42%) 154Er
155Tm 69 86 154.939210(11) 21.6(2) s β+ (99.17%) 155Er 11/2−
α (0.83%) 151Ho
155mTm 41(6) keV 45(4) s β+ 155Er 1/2+
156Tm 69 87 155.938986(15) 83.8(18) s β+ (99.94%) 156Er 2−
α (0.064%) 152Er
156mTm 400(200)# keV ~400 ns IT 156Tm (11−)
157Tm 69 88 156.936973(30) 3.63(9) min β+ 157Er 1/2+
α (7.5×10−4%) 153Er
157mTm[n 8] 100(50)# keV 1.6 s 7/2−#
158Tm 69 89 157.936980(27) 3.98(6) min β+ 158Er 2−
158mTm[n 8] 100(50)# keV ~20 s 5−#
159Tm 69 90 158.934975(30) 9.13(16) min β+ 159Er 5/2+
160Tm 69 91 159.935264(35) 9.4(3) min β+ 160Er 1−
160m1Tm 67(14) keV 74.5(15) s IT (85%) 160Tm (5+)
β+ (15%) 160Er
160m2Tm 215(52)# keV ~200 ns IT 160Tm (8)
161Tm 69 92 160.933549(30) 30.2(8) min β+ 161Er 7/2+
161m1Tm 7.51(24) keV 5# min (1/2+)
161m2Tm 78.20(3) keV 110(3) ns IT 161Tm 7/2−
162Tm 69 93 161.934001(28) 21.70(19) min β+ 162Er 1−
162mTm 130(40) keV 24.3(17) s IT (81%) 162Tm 5+
β+ (19%) 162Er
163Tm 69 94 162.9326583(59) 1.810(5) h β+ 163Er 1/2+
163mTm 86.92(5) keV 380(30) ns IT 163Tm (7/2)−
164Tm 69 95 163.933538(27) 2.0(1) min EC (61%) 164Er 1+
β+ (39%)
164mTm 20(12) keV 5.1(1) min IT (~80%) 164Tm 6−
β+ (~20%) 164Er
165Tm 69 96 164.9324418(18) 30.06(3) h β+ 165Er 1/2+
165m1Tm 80.37(6) keV 80(3) μs IT 165Tm 7/2+
165m2Tm 160.47(6) keV 9.0(5) μs IT 165Tm 7/2−
166Tm 69 97 165.933562(12) 7.70(3) h β+ 166Er 2+
166m1Tm 122(7) keV 348(21) ms IT 166Tm (6−)
166m2Tm 244(7) keV 2(1) μs IT 166Tm (6−)
167Tm 69 98 166.9328572(14) 9.25(2) d EC 167Er 1/2+
167m1Tm 179.480(19) keV 1.16(6) μs IT 167Tm 7/2+
167m2Tm 292.820(20) keV 0.9(1) μs IT 167Tm 7/2−
168Tm 69 99 167.9341785(18) 93.1(2) d β+ (99.99%) 168Er 3+
β (0.010%) 168Yb
169Tm 69 100 168.93421896(79) Observationally Stable[n 9] 1/2+ 1.0000
169mTm 316.1463(1) keV 659.9(23) ns IT 169Tm 7/2+
170Tm 69 101 169.93580709(79) 128.6(3) d β (99.87%) 170Yb 1−
EC (0.131%) 170Er
170mTm 183.197(4)&nvsp;keV 4.12(13) μs IT 170Tm 3+
171Tm 69 102 170.9364352(10) 1.92(1) y β 171Yb 1/2+
171m1Tm 424.9557(15) keV 2.60(2) μs IT 171Tm 7/2−
171m2Tm 1674.43(13) keV 1.7(2) μs IT 171Tm 19/2+
172Tm 69 103 171.9384070(59) 63.6(3) h β 172Yb 2−
172mTm 476.2(2) keV 132(7) μs IT 172Tm (6+)
173Tm 69 104 172.9396066(47) 8.24(8) h β 173Yb (1/2+)
173m1Tm 317.73(20) keV 10.7(17) μs IT 173Tm 7/2−
173m2Tm 1905.7(4) keV 250(69) ns IT 173Tm 19/2−
173m3Tm 4047.9(5) keV 121(28) ns IT 173Tm 35/2−
174Tm 69 105 173.942174(48) 5.4(1) min β 174Yb 4−
174m1Tm 252.4(7) keV 2.29(1) s IT (>98.5%) 174Tm 0+
β (<1.5%) 174Yb
174m2Tm 2091.7(3) keV 106(7) μs IT 174Tm 14−
175Tm 69 106 174.943842(54) 15.2(5) min β 175Yb (1/2)+
175m1Tm 440.0(11) keV 319(35) ns IT 175Tm 7/2−
175m2Tm 1517.7(12) keV 21(14) μs IT 175Tm 23/2+
176Tm 69 107 175.94700(11) 1.85(3) min β 176Yb (4+)
177Tm 69 108 176.94893(22)# 95(7) s β 177Yb 1/2+#
177mTm[n 8] 100(100)# keV 77(11) s β 177Yb 7/2−#
178Tm 69 109 177.95251(32)# 10# s
[>300 ns]
1−#
179Tm 69 110 178.95502(43)# 18# s
[>300 ns]
1/2+#
180Tm 69 111 179.95902(43)# 3# s
[>300 ns]
181Tm 69 112 180.96195(54)# 7# s
[>300 ns]
1/2+#
182Tm[5] 69 113 181.96619(54)#
183Tm[5] 69 114
This table header & footer:
  1. ^ mTm – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition


    p: Proton emission
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ a b c d e f Order of ground state and isomer is uncertain.
  9. ^ Believed to undergo α decay to 165Ho

Thulium-170

edit

Thulium-170 has a half-life of 128.6 days, decaying by β decay about 99.87% of the time and electron capture the remaining 0.13% of the time.[1] Due to its low-energy X-ray emissions, it has been proposed for radiotherapy[6] and as a source in a radiothermal generator.[7]

References

edit
  1. ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Thulium". CIAAW. 2021.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. ^ a b Tarasov, O. B.; Gade, A.; Fukushima, K.; et al. (2024). "Observation of New Isotopes in the Fragmentation of 198Pt at FRIB". Physical Review Letters. 132 (072501). doi:10.1103/PhysRevLett.132.072501.
  6. ^ Polyak, Andras; Das, Tapas; Chakraborty, Sudipta; Kiraly, Reka; Dabasi, Gabriella; Joba, Robert Peter; Jakab, Csaba; Thuroczy, Julianna; Postenyi, Zita; Haasz, Veronika; Janoki, Gergely; Janoki, Gyozo A.; Pillai, Maroor R.A.; Balogh, Lajos (October 2014). "Thulium-170-Labeled Microparticles for Local Radiotherapy: Preliminary Studies". Cancer Biotherapy and Radiopharmaceuticals. 29 (8): 330–338. doi:10.1089/cbr.2014.1680. ISSN 1084-9785. PMID 25226213 – via Academia.edu.
  7. ^ Dustin, J. Seth; Borrelli, R.A. (December 2021). "Assessment of alternative radionuclides for use in a radioisotope thermoelectric generator". Nuclear Engineering and Design. 385: 111475. doi:10.1016/j.nucengdes.2021.111475.