The objective of the Thomson problem is to determine the minimum electrostatic potential energy configuration of N electrons constrained to the surface of a unit sphere that repel each other with a force given by Coulomb's law. The physicist J. J. Thomson posed the problem in 1904[1] after proposing an atomic model, later called the plum pudding model, based on his knowledge of the existence of negatively charged electrons within neutrally-charged atoms.
Related problems include the study of the geometry of the minimum energy configuration and the study of the large N behavior of the minimum energy.
Mathematical statement
editThe electrostatic interaction energy occurring between each pair of electrons of equal charges ( , with the elementary charge of an electron) is given by Coulomb's law,
where is the electric constant and is the distance between each pair of electrons located at points on the sphere defined by vectors and , respectively.
Simplified units of and (the Coulomb constant) are used without loss of generality. Then,
The total electrostatic potential energy of each N-electron configuration may then be expressed as the sum of all pair-wise interaction energies
The global minimization of over all possible configurations of N distinct points is typically found by numerical minimization algorithms.
Thomson's problem is related to the 7th of the eighteen unsolved mathematics problems proposed by the mathematician Steve Smale — "Distribution of points on the 2-sphere".[2] The main difference is that in Smale's problem the function to minimise is not the electrostatic potential but a logarithmic potential given by A second difference is that Smale's question is about the asymptotic behaviour of the total potential when the number N of points goes to infinity, not for concrete values of N.
Example
editThe solution of the Thomson problem for two electrons is obtained when both electrons are as far apart as possible on opposite sides of the origin, , or
Known exact solutions
editMathematically exact minimum energy configurations have been rigorously identified in only a handful of cases.
- For N = 1, the solution is trivial. The single electron may reside at any point on the surface of the unit sphere. The total energy of the configuration is defined as zero because the charge of the electron is subject to no electric field due to other sources of charge.
- For N = 2, the optimal configuration consists of electrons at antipodal points. This represents the first one-dimensional solution.
- For N = 3, electrons reside at the vertices of an equilateral triangle about any great circle.[3] The great circle is often considered to define an equator about the sphere and the two points perpendicular to the plane are often considered poles to aid in discussions about the electrostatic configurations of many-N electron solutions. Also, this represents the first two-dimensional solution.
- For N = 4, electrons reside at the vertices of a regular tetrahedron. Of interest, this represents the first three-dimensional solution.
- For N = 5, a mathematically rigorous computer-aided solution was reported in 2010 with electrons residing at vertices of a triangular dipyramid.[4] Of interest, it is impossible for any N solution with five or more electrons to exhibit global equidistance among all pairs of electrons.
- For N = 6, electrons reside at vertices of a regular octahedron.[5] The configuration may be imagined as four electrons residing at the corners of a square about the equator and the remaining two residing at the poles.
- For N = 12, electrons reside at the vertices of a regular icosahedron.[6]
Geometric solutions of the Thomson problem for N = 4, 6, and 12 electrons are Platonic solids whose faces are all congruent equilateral triangles. Numerical solutions for N = 8 and 20 are not the regular convex polyhedral configurations of the remaining two Platonic solids, the cube and dodecahedron respectively.[7]
Generalizations
editOne can also ask for ground states of particles interacting with arbitrary potentials. To be mathematically precise, let f be a decreasing real-valued function, and define the energy functional
Traditionally, one considers also known as Riesz -kernels. For integrable Riesz kernels see the 1972 work of Landkof.[8] For non-integrable Riesz kernels, the Poppy-seed bagel theorem holds, see the 2004 work of Hardin and Saff.[9] Notable cases include:[10]
- α = ∞, the Tammes problem (packing);
- α = 1, the Thomson problem;
- α = 0, to maximize the product of distances, latterly known as Whyte's problem;
- α = −1 : maximum average distance problem.
One may also consider configurations of N points on a sphere of higher dimension. See spherical design.
Solution algorithms
editSeveral algorithms have been applied to this problem. The focus since the millennium has been on local optimization methods applied to the energy function, although random walks have made their appearance:[10]
- constrained global optimization (Altschuler et al. 1994),
- steepest descent (Claxton and Benson 1966, Erber and Hockney 1991),
- random walk (Weinrach et al. 1990),
- genetic algorithm (Morris et al. 1996)
While the objective is to minimize the global electrostatic potential energy of each N-electron case, several algorithmic starting cases are of interest.
Continuous spherical shell charge
editThe energy of a continuous spherical shell of charge distributed across its surface is given by
and is, in general, greater than the energy of every Thomson problem solution. Note: Here N is used as a continuous variable that represents the infinitely divisible charge, Q, distributed across the spherical shell. For example, a spherical shell of represents the uniform distribution of a single electron's charge, , across the entire shell.
Randomly distributed point charges
editThe expected global energy of a system of electrons distributed in a purely random manner across the surface of the sphere is given by
and is, in general, greater than the energy of every Thomson problem solution.
Here, N is a discrete variable that counts the number of electrons in the system. As well, .
Charge-centered distribution
editFor every Nth solution of the Thomson problem there is an th configuration that includes an electron at the origin of the sphere whose energy is simply the addition of N to the energy of the Nth solution. That is,[11]
Thus, if is known exactly, then is known exactly.
In general, is greater than , but is remarkably closer to each th Thomson solution than and . Therefore, the charge-centered distribution represents a smaller "energy gap" to cross to arrive at a solution of each Thomson problem than algorithms that begin with the other two charge configurations.
Relations to other scientific problems
editThe Thomson problem is a natural consequence of J. J. Thomson's plum pudding model in the absence of its uniform positive background charge.[12]
"No fact discovered about the atom can be trivial, nor fail to accelerate the progress of physical science, for the greater part of natural philosophy is the outcome of the structure and mechanism of the atom."
—Sir J. J. Thomson[13]
Though experimental evidence led to the abandonment of Thomson's plum pudding model as a complete atomic model, irregularities observed in numerical energy solutions of the Thomson problem have been found to correspond with electron shell-filling in naturally occurring atoms throughout the periodic table of elements.[14]
The Thomson problem also plays a role in the study of other physical models including multi-electron bubbles and the surface ordering of liquid metal drops confined in Paul traps.
The generalized Thomson problem arises, for example, in determining arrangements of protein subunits that comprise the shells of spherical viruses. The "particles" in this application are clusters of protein subunits arranged on a shell. Other realizations include regular arrangements of colloid particles in colloidosomes, proposed for encapsulation of active ingredients such as drugs, nutrients or living cells, fullerene patterns of carbon atoms, and VSEPR theory. An example with long-range logarithmic interactions is provided by Abrikosov vortices that form at low temperatures in a superconducting metal shell with a large monopole at its center.
Configurations of smallest known energy
editIn the following table[citation needed] is the number of points (charges) in a configuration, is the energy, the symmetry type is given in Schönflies notation (see Point groups in three dimensions), and are the positions of the charges. Most symmetry types require the vector sum of the positions (and thus the electric dipole moment) to be zero.
It is customary to also consider the polyhedron formed by the convex hull of the points. Thus, is the number of vertices where the given number of edges meet, is the total number of edges, is the number of triangular faces, is the number of quadrilateral faces, and is the smallest angle subtended by vectors associated with the nearest charge pair. Note that the edge lengths are generally not equal. Thus, except in the cases N = 2, 3, 4, 6, 12, and the geodesic polyhedra, the convex hull is only topologically equivalent to the figure listed in the last column.[15]
N | Symmetry | Equivalent polyhedron | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0.500000000 | 0 | – | – | – | – | – | – | 1 | – | – | 180.000° | digon | |
3 | 1.732050808 | 0 | – | – | – | – | – | – | 3 | 2 | – | 120.000° | triangle | |
4 | 3.674234614 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 6 | 4 | 0 | 109.471° | tetrahedron | |
5 | 6.474691495 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | 9 | 6 | 0 | 90.000° | triangular dipyramid | |
6 | 9.985281374 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 12 | 8 | 0 | 90.000° | octahedron | |
7 | 14.452977414 | 0 | 0 | 5 | 2 | 0 | 0 | 0 | 15 | 10 | 0 | 72.000° | pentagonal dipyramid | |
8 | 19.675287861 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 16 | 8 | 2 | 71.694° | square antiprism | |
9 | 25.759986531 | 0 | 0 | 3 | 6 | 0 | 0 | 0 | 21 | 14 | 0 | 69.190° | triaugmented triangular prism | |
10 | 32.716949460 | 0 | 0 | 2 | 8 | 0 | 0 | 0 | 24 | 16 | 0 | 64.996° | gyroelongated square dipyramid | |
11 | 40.596450510 | 0.013219635 | 0 | 2 | 8 | 1 | 0 | 0 | 27 | 18 | 0 | 58.540° | edge-contracted icosahedron | |
12 | 49.165253058 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 30 | 20 | 0 | 63.435° | icosahedron (geodesic sphere {3,5+}1,0) | |
13 | 58.853230612 | 0.008820367 | 0 | 1 | 10 | 2 | 0 | 0 | 33 | 22 | 0 | 52.317° | ||
14 | 69.306363297 | 0 | 0 | 0 | 12 | 2 | 0 | 0 | 36 | 24 | 0 | 52.866° | gyroelongated hexagonal dipyramid | |
15 | 80.670244114 | 0 | 0 | 0 | 12 | 3 | 0 | 0 | 39 | 26 | 0 | 49.225° | ||
16 | 92.911655302 | 0 | 0 | 0 | 12 | 4 | 0 | 0 | 42 | 28 | 0 | 48.936° | tetrahedrally diminished dodecahedron | |
17 | 106.050404829 | 0 | 0 | 0 | 12 | 5 | 0 | 0 | 45 | 30 | 0 | 50.108° | double-gyroelongated pentagonal dipyramid | |
18 | 120.084467447 | 0 | 0 | 2 | 8 | 8 | 0 | 0 | 48 | 32 | 0 | 47.534° | ||
19 | 135.089467557 | 0.000135163 | 0 | 0 | 14 | 5 | 0 | 0 | 50 | 32 | 1 | 44.910° | ||
20 | 150.881568334 | 0 | 0 | 0 | 12 | 8 | 0 | 0 | 54 | 36 | 0 | 46.093° | ||
21 | 167.641622399 | 0.001406124 | 0 | 1 | 10 | 10 | 0 | 0 | 57 | 38 | 0 | 44.321° | ||
22 | 185.287536149 | 0 | 0 | 0 | 12 | 10 | 0 | 0 | 60 | 40 | 0 | 43.302° | ||
23 | 203.930190663 | 0 | 0 | 0 | 12 | 11 | 0 | 0 | 63 | 42 | 0 | 41.481° | ||
24 | 223.347074052 | 0 | 0 | 0 | 24 | 0 | 0 | 0 | 60 | 32 | 6 | 42.065° | snub cube | |
25 | 243.812760299 | 0.001021305 | 0 | 0 | 14 | 11 | 0 | 0 | 68 | 44 | 1 | 39.610° | ||
26 | 265.133326317 | 0.001919065 | 0 | 0 | 12 | 14 | 0 | 0 | 72 | 48 | 0 | 38.842° | ||
27 | 287.302615033 | 0 | 0 | 0 | 12 | 15 | 0 | 0 | 75 | 50 | 0 | 39.940° | ||
28 | 310.491542358 | 0 | 0 | 0 | 12 | 16 | 0 | 0 | 78 | 52 | 0 | 37.824° | ||
29 | 334.634439920 | 0 | 0 | 0 | 12 | 17 | 0 | 0 | 81 | 54 | 0 | 36.391° | ||
30 | 359.603945904 | 0 | 0 | 0 | 12 | 18 | 0 | 0 | 84 | 56 | 0 | 36.942° | ||
31 | 385.530838063 | 0.003204712 | 0 | 0 | 12 | 19 | 0 | 0 | 87 | 58 | 0 | 36.373° | ||
32 | 412.261274651 | 0 | 0 | 0 | 12 | 20 | 0 | 0 | 90 | 60 | 0 | 37.377° | pentakis dodecahedron (geodesic sphere {3,5+}1,1) | |
33 | 440.204057448 | 0.004356481 | 0 | 0 | 15 | 17 | 1 | 0 | 92 | 60 | 1 | 33.700° | ||
34 | 468.904853281 | 0 | 0 | 0 | 12 | 22 | 0 | 0 | 96 | 64 | 0 | 33.273° | ||
35 | 498.569872491 | 0.000419208 | 0 | 0 | 12 | 23 | 0 | 0 | 99 | 66 | 0 | 33.100° | ||
36 | 529.122408375 | 0 | 0 | 0 | 12 | 24 | 0 | 0 | 102 | 68 | 0 | 33.229° | ||
37 | 560.618887731 | 0 | 0 | 0 | 12 | 25 | 0 | 0 | 105 | 70 | 0 | 32.332° | ||
38 | 593.038503566 | 0 | 0 | 0 | 12 | 26 | 0 | 0 | 108 | 72 | 0 | 33.236° | ||
39 | 626.389009017 | 0 | 0 | 0 | 12 | 27 | 0 | 0 | 111 | 74 | 0 | 32.053° | ||
40 | 660.675278835 | 0 | 0 | 0 | 12 | 28 | 0 | 0 | 114 | 76 | 0 | 31.916° | ||
41 | 695.916744342 | 0 | 0 | 0 | 12 | 29 | 0 | 0 | 117 | 78 | 0 | 31.528° | ||
42 | 732.078107544 | 0 | 0 | 0 | 12 | 30 | 0 | 0 | 120 | 80 | 0 | 31.245° | ||
43 | 769.190846459 | 0.000399668 | 0 | 0 | 12 | 31 | 0 | 0 | 123 | 82 | 0 | 30.867° | ||
44 | 807.174263085 | 0 | 0 | 0 | 24 | 20 | 0 | 0 | 120 | 72 | 6 | 31.258° | ||
45 | 846.188401061 | 0 | 0 | 0 | 12 | 33 | 0 | 0 | 129 | 86 | 0 | 30.207° | ||
46 | 886.167113639 | 0 | 0 | 0 | 12 | 34 | 0 | 0 | 132 | 88 | 0 | 29.790° | ||
47 | 927.059270680 | 0.002482914 | 0 | 0 | 14 | 33 | 0 | 0 | 134 | 88 | 1 | 28.787° | ||
48 | 968.713455344 | 0 | 0 | 0 | 24 | 24 | 0 | 0 | 132 | 80 | 6 | 29.690° | ||
49 | 1011.557182654 | 0.001529341 | 0 | 0 | 12 | 37 | 0 | 0 | 141 | 94 | 0 | 28.387° | ||
50 | 1055.182314726 | 0 | 0 | 0 | 12 | 38 | 0 | 0 | 144 | 96 | 0 | 29.231° | ||
51 | 1099.819290319 | 0 | 0 | 0 | 12 | 39 | 0 | 0 | 147 | 98 | 0 | 28.165° | ||
52 | 1145.418964319 | 0.000457327 | 0 | 0 | 12 | 40 | 0 | 0 | 150 | 100 | 0 | 27.670° | ||
53 | 1191.922290416 | 0.000278469 | 0 | 0 | 18 | 35 | 0 | 0 | 150 | 96 | 3 | 27.137° | ||
54 | 1239.361474729 | 0.000137870 | 0 | 0 | 12 | 42 | 0 | 0 | 156 | 104 | 0 | 27.030° | ||
55 | 1287.772720783 | 0.000391696 | 0 | 0 | 12 | 43 | 0 | 0 | 159 | 106 | 0 | 26.615° | ||
56 | 1337.094945276 | 0 | 0 | 0 | 12 | 44 | 0 | 0 | 162 | 108 | 0 | 26.683° | ||
57 | 1387.383229253 | 0 | 0 | 0 | 12 | 45 | 0 | 0 | 165 | 110 | 0 | 26.702° | ||
58 | 1438.618250640 | 0 | 0 | 0 | 12 | 46 | 0 | 0 | 168 | 112 | 0 | 26.155° | ||
59 | 1490.773335279 | 0.000154286 | 0 | 0 | 14 | 43 | 2 | 0 | 171 | 114 | 0 | 26.170° | ||
60 | 1543.830400976 | 0 | 0 | 0 | 12 | 48 | 0 | 0 | 174 | 116 | 0 | 25.958° | ||
61 | 1597.941830199 | 0.001091717 | 0 | 0 | 12 | 49 | 0 | 0 | 177 | 118 | 0 | 25.392° | ||
62 | 1652.909409898 | 0 | 0 | 0 | 12 | 50 | 0 | 0 | 180 | 120 | 0 | 25.880° | ||
63 | 1708.879681503 | 0 | 0 | 0 | 12 | 51 | 0 | 0 | 183 | 122 | 0 | 25.257° | ||
64 | 1765.802577927 | 0 | 0 | 0 | 12 | 52 | 0 | 0 | 186 | 124 | 0 | 24.920° | ||
65 | 1823.667960264 | 0.000399515 | 0 | 0 | 12 | 53 | 0 | 0 | 189 | 126 | 0 | 24.527° | ||
66 | 1882.441525304 | 0.000776245 | 0 | 0 | 12 | 54 | 0 | 0 | 192 | 128 | 0 | 24.765° | ||
67 | 1942.122700406 | 0 | 0 | 0 | 12 | 55 | 0 | 0 | 195 | 130 | 0 | 24.727° | ||
68 | 2002.874701749 | 0 | 0 | 0 | 12 | 56 | 0 | 0 | 198 | 132 | 0 | 24.433° | ||
69 | 2064.533483235 | 0 | 0 | 0 | 12 | 57 | 0 | 0 | 201 | 134 | 0 | 24.137° | ||
70 | 2127.100901551 | 0 | 0 | 0 | 12 | 50 | 0 | 0 | 200 | 128 | 4 | 24.291° | ||
71 | 2190.649906425 | 0.001256769 | 0 | 0 | 14 | 55 | 2 | 0 | 207 | 138 | 0 | 23.803° | ||
72 | 2255.001190975 | 0 | 0 | 0 | 12 | 60 | 0 | 0 | 210 | 140 | 0 | 24.492° | geodesic sphere {3,5+}2,1 | |
73 | 2320.633883745 | 0.001572959 | 0 | 0 | 12 | 61 | 0 | 0 | 213 | 142 | 0 | 22.810° | ||
74 | 2387.072981838 | 0.000641539 | 0 | 0 | 12 | 62 | 0 | 0 | 216 | 144 | 0 | 22.966° | ||
75 | 2454.369689040 | 0 | 0 | 0 | 12 | 63 | 0 | 0 | 219 | 146 | 0 | 22.736° | ||
76 | 2522.674871841 | 0.000943474 | 0 | 0 | 12 | 64 | 0 | 0 | 222 | 148 | 0 | 22.886° | ||
77 | 2591.850152354 | 0 | 0 | 0 | 12 | 65 | 0 | 0 | 225 | 150 | 0 | 23.286° | ||
78 | 2662.046474566 | 0 | 0 | 0 | 12 | 66 | 0 | 0 | 228 | 152 | 0 | 23.426° | ||
79 | 2733.248357479 | 0.000702921 | 0 | 0 | 12 | 63 | 1 | 0 | 230 | 152 | 1 | 22.636° | ||
80 | 2805.355875981 | 0 | 0 | 0 | 16 | 64 | 0 | 0 | 232 | 152 | 2 | 22.778° | ||
81 | 2878.522829664 | 0.000194289 | 0 | 0 | 12 | 69 | 0 | 0 | 237 | 158 | 0 | 21.892° | ||
82 | 2952.569675286 | 0 | 0 | 0 | 12 | 70 | 0 | 0 | 240 | 160 | 0 | 22.206° | ||
83 | 3027.528488921 | 0.000339815 | 0 | 0 | 14 | 67 | 2 | 0 | 243 | 162 | 0 | 21.646° | ||
84 | 3103.465124431 | 0.000401973 | 0 | 0 | 12 | 72 | 0 | 0 | 246 | 164 | 0 | 21.513° | ||
85 | 3180.361442939 | 0.000416581 | 0 | 0 | 12 | 73 | 0 | 0 | 249 | 166 | 0 | 21.498° | ||
86 | 3258.211605713 | 0.001378932 | 0 | 0 | 12 | 74 | 0 | 0 | 252 | 168 | 0 | 21.522° | ||
87 | 3337.000750014 | 0.000754863 | 0 | 0 | 12 | 75 | 0 | 0 | 255 | 170 | 0 | 21.456° | ||
88 | 3416.720196758 | 0 | 0 | 0 | 12 | 76 | 0 | 0 | 258 | 172 | 0 | 21.486° | ||
89 | 3497.439018625 | 0.000070891 | 0 | 0 | 12 | 77 | 0 | 0 | 261 | 174 | 0 | 21.182° | ||
90 | 3579.091222723 | 0 | 0 | 0 | 12 | 78 | 0 | 0 | 264 | 176 | 0 | 21.230° | ||
91 | 3661.713699320 | 0.000033221 | 0 | 0 | 12 | 79 | 0 | 0 | 267 | 178 | 0 | 21.105° | ||
92 | 3745.291636241 | 0 | 0 | 0 | 12 | 80 | 0 | 0 | 270 | 180 | 0 | 21.026° | ||
93 | 3829.844338421 | 0.000213246 | 0 | 0 | 12 | 81 | 0 | 0 | 273 | 182 | 0 | 20.751° | ||
94 | 3915.309269620 | 0 | 0 | 0 | 12 | 82 | 0 | 0 | 276 | 184 | 0 | 20.952° | ||
95 | 4001.771675565 | 0.000116638 | 0 | 0 | 12 | 83 | 0 | 0 | 279 | 186 | 0 | 20.711° | ||
96 | 4089.154010060 | 0.000036310 | 0 | 0 | 12 | 84 | 0 | 0 | 282 | 188 | 0 | 20.687° | ||
97 | 4177.533599622 | 0.000096437 | 0 | 0 | 12 | 85 | 0 | 0 | 285 | 190 | 0 | 20.450° | ||
98 | 4266.822464156 | 0.000112916 | 0 | 0 | 12 | 86 | 0 | 0 | 288 | 192 | 0 | 20.422° | ||
99 | 4357.139163132 | 0.000156508 | 0 | 0 | 12 | 87 | 0 | 0 | 291 | 194 | 0 | 20.284° | ||
100 | 4448.350634331 | 0 | 0 | 0 | 12 | 88 | 0 | 0 | 294 | 196 | 0 | 20.297° | ||
101 | 4540.590051694 | 0 | 0 | 0 | 12 | 89 | 0 | 0 | 297 | 198 | 0 | 20.011° | ||
102 | 4633.736565899 | 0 | 0 | 0 | 12 | 90 | 0 | 0 | 300 | 200 | 0 | 20.040° | ||
103 | 4727.836616833 | 0.000201245 | 0 | 0 | 12 | 91 | 0 | 0 | 303 | 202 | 0 | 19.907° | ||
104 | 4822.876522746 | 0 | 0 | 0 | 12 | 92 | 0 | 0 | 306 | 204 | 0 | 19.957° | ||
105 | 4919.000637616 | 0 | 0 | 0 | 12 | 93 | 0 | 0 | 309 | 206 | 0 | 19.842° | ||
106 | 5015.984595705 | 0 | 0 | 0 | 12 | 94 | 0 | 0 | 312 | 208 | 0 | 19.658° | ||
107 | 5113.953547724 | 0.000064137 | 0 | 0 | 12 | 95 | 0 | 0 | 315 | 210 | 0 | 19.327° | ||
108 | 5212.813507831 | 0.000432525 | 0 | 0 | 12 | 96 | 0 | 0 | 318 | 212 | 0 | 19.327° | ||
109 | 5312.735079920 | 0.000647299 | 0 | 0 | 14 | 93 | 2 | 0 | 321 | 214 | 0 | 19.103° | ||
110 | 5413.549294192 | 0 | 0 | 0 | 12 | 98 | 0 | 0 | 324 | 216 | 0 | 19.476° | ||
111 | 5515.293214587 | 0 | 0 | 0 | 12 | 99 | 0 | 0 | 327 | 218 | 0 | 19.255° | ||
112 | 5618.044882327 | 0 | 0 | 0 | 12 | 100 | 0 | 0 | 330 | 220 | 0 | 19.351° | ||
113 | 5721.824978027 | 0 | 0 | 0 | 12 | 101 | 0 | 0 | 333 | 222 | 0 | 18.978° | ||
114 | 5826.521572163 | 0.000149772 | 0 | 0 | 12 | 102 | 0 | 0 | 336 | 224 | 0 | 18.836° | ||
115 | 5932.181285777 | 0.000049972 | 0 | 0 | 12 | 103 | 0 | 0 | 339 | 226 | 0 | 18.458° | ||
116 | 6038.815593579 | 0.000259726 | 0 | 0 | 12 | 104 | 0 | 0 | 342 | 228 | 0 | 18.386° | ||
117 | 6146.342446579 | 0.000127609 | 0 | 0 | 12 | 105 | 0 | 0 | 345 | 230 | 0 | 18.566° | ||
118 | 6254.877027790 | 0.000332475 | 0 | 0 | 12 | 106 | 0 | 0 | 348 | 232 | 0 | 18.455° | ||
119 | 6364.347317479 | 0.000685590 | 0 | 0 | 12 | 107 | 0 | 0 | 351 | 234 | 0 | 18.336° | ||
120 | 6474.756324980 | 0.001373062 | 0 | 0 | 12 | 108 | 0 | 0 | 354 | 236 | 0 | 18.418° | ||
121 | 6586.121949584 | 0.000838863 | 0 | 0 | 12 | 109 | 0 | 0 | 357 | 238 | 0 | 18.199° | ||
122 | 6698.374499261 | 0 | 0 | 0 | 12 | 110 | 0 | 0 | 360 | 240 | 0 | 18.612° | geodesic sphere {3,5+}2,2 | |
123 | 6811.827228174 | 0.001939754 | 0 | 0 | 14 | 107 | 2 | 0 | 363 | 242 | 0 | 17.840° | ||
124 | 6926.169974193 | 0 | 0 | 0 | 12 | 112 | 0 | 0 | 366 | 244 | 0 | 18.111° | ||
125 | 7041.473264023 | 0.000088274 | 0 | 0 | 12 | 113 | 0 | 0 | 369 | 246 | 0 | 17.867° | ||
126 | 7157.669224867 | 0 | 0 | 2 | 16 | 100 | 8 | 0 | 372 | 248 | 0 | 17.920° | ||
127 | 7274.819504675 | 0 | 0 | 0 | 12 | 115 | 0 | 0 | 375 | 250 | 0 | 17.877° | ||
128 | 7393.007443068 | 0.000054132 | 0 | 0 | 12 | 116 | 0 | 0 | 378 | 252 | 0 | 17.814° | ||
129 | 7512.107319268 | 0.000030099 | 0 | 0 | 12 | 117 | 0 | 0 | 381 | 254 | 0 | 17.743° | ||
130 | 7632.167378912 | 0.000025622 | 0 | 0 | 12 | 118 | 0 | 0 | 384 | 256 | 0 | 17.683° | ||
131 | 7753.205166941 | 0.000305133 | 0 | 0 | 12 | 119 | 0 | 0 | 387 | 258 | 0 | 17.511° | ||
132 | 7875.045342797 | 0 | 0 | 0 | 12 | 120 | 0 | 0 | 390 | 260 | 0 | 17.958° | geodesic sphere {3,5+}3,1 | |
133 | 7998.179212898 | 0.000591438 | 0 | 0 | 12 | 121 | 0 | 0 | 393 | 262 | 0 | 17.133° | ||
134 | 8122.089721194 | 0.000470268 | 0 | 0 | 12 | 122 | 0 | 0 | 396 | 264 | 0 | 17.214° | ||
135 | 8246.909486992 | 0 | 0 | 0 | 12 | 123 | 0 | 0 | 399 | 266 | 0 | 17.431° | ||
136 | 8372.743302539 | 0 | 0 | 0 | 12 | 124 | 0 | 0 | 402 | 268 | 0 | 17.485° | ||
137 | 8499.534494782 | 0 | 0 | 0 | 12 | 125 | 0 | 0 | 405 | 270 | 0 | 17.560° | ||
138 | 8627.406389880 | 0.000473576 | 0 | 0 | 12 | 126 | 0 | 0 | 408 | 272 | 0 | 16.924° | ||
139 | 8756.227056057 | 0.000404228 | 0 | 0 | 12 | 127 | 0 | 0 | 411 | 274 | 0 | 16.673° | ||
140 | 8885.980609041 | 0.000630351 | 0 | 0 | 13 | 126 | 1 | 0 | 414 | 276 | 0 | 16.773° | ||
141 | 9016.615349190 | 0.000376365 | 0 | 0 | 14 | 126 | 0 | 1 | 417 | 278 | 0 | 16.962° | ||
142 | 9148.271579993 | 0.000550138 | 0 | 0 | 12 | 130 | 0 | 0 | 420 | 280 | 0 | 16.840° | ||
143 | 9280.839851192 | 0.000255449 | 0 | 0 | 12 | 131 | 0 | 0 | 423 | 282 | 0 | 16.782° | ||
144 | 9414.371794460 | 0 | 0 | 0 | 12 | 132 | 0 | 0 | 426 | 284 | 0 | 16.953° | ||
145 | 9548.928837232 | 0.000094938 | 0 | 0 | 12 | 133 | 0 | 0 | 429 | 286 | 0 | 16.841° | ||
146 | 9684.381825575 | 0 | 0 | 0 | 12 | 134 | 0 | 0 | 432 | 288 | 0 | 16.905° | ||
147 | 9820.932378373 | 0.000636651 | 0 | 0 | 12 | 135 | 0 | 0 | 435 | 290 | 0 | 16.458° | ||
148 | 9958.406004270 | 0.000203701 | 0 | 0 | 12 | 136 | 0 | 0 | 438 | 292 | 0 | 16.627° | ||
149 | 10096.859907397 | 0.000638186 | 0 | 0 | 14 | 133 | 2 | 0 | 441 | 294 | 0 | 16.344° | ||
150 | 10236.196436701 | 0 | 0 | 0 | 12 | 138 | 0 | 0 | 444 | 296 | 0 | 16.405° | ||
151 | 10376.571469275 | 0.000153836 | 0 | 0 | 12 | 139 | 0 | 0 | 447 | 298 | 0 | 16.163° | ||
152 | 10517.867592878 | 0 | 0 | 0 | 12 | 140 | 0 | 0 | 450 | 300 | 0 | 16.117° | ||
153 | 10660.082748237 | 0 | 0 | 0 | 12 | 141 | 0 | 0 | 453 | 302 | 0 | 16.390° | ||
154 | 10803.372421141 | 0.000735800 | 0 | 0 | 12 | 142 | 0 | 0 | 456 | 304 | 0 | 16.078° | ||
155 | 10947.574692279 | 0.000603670 | 0 | 0 | 12 | 143 | 0 | 0 | 459 | 306 | 0 | 15.990° | ||
156 | 11092.798311456 | 0.000508534 | 0 | 0 | 12 | 144 | 0 | 0 | 462 | 308 | 0 | 15.822° | ||
157 | 11238.903041156 | 0.000357679 | 0 | 0 | 12 | 145 | 0 | 0 | 465 | 310 | 0 | 15.948° | ||
158 | 11385.990186197 | 0.000921918 | 0 | 0 | 12 | 146 | 0 | 0 | 468 | 312 | 0 | 15.987° | ||
159 | 11534.023960956 | 0.000381457 | 0 | 0 | 12 | 147 | 0 | 0 | 471 | 314 | 0 | 15.960° | ||
160 | 11683.054805549 | 0 | 0 | 0 | 12 | 148 | 0 | 0 | 474 | 316 | 0 | 15.961° | ||
161 | 11833.084739465 | 0.000056447 | 0 | 0 | 12 | 149 | 0 | 0 | 477 | 318 | 0 | 15.810° | ||
162 | 11984.050335814 | 0 | 0 | 0 | 12 | 150 | 0 | 0 | 480 | 320 | 0 | 15.813° | ||
163 | 12136.013053220 | 0.000120798 | 0 | 0 | 12 | 151 | 0 | 0 | 483 | 322 | 0 | 15.675° | ||
164 | 12288.930105320 | 0 | 0 | 0 | 12 | 152 | 0 | 0 | 486 | 324 | 0 | 15.655° | ||
165 | 12442.804451373 | 0.000091119 | 0 | 0 | 12 | 153 | 0 | 0 | 489 | 326 | 0 | 15.651° | ||
166 | 12597.649071323 | 0 | 0 | 0 | 16 | 146 | 4 | 0 | 492 | 328 | 0 | 15.607° | ||
167 | 12753.469429750 | 0.000097382 | 0 | 0 | 12 | 155 | 0 | 0 | 495 | 330 | 0 | 15.600° | ||
168 | 12910.212672268 | 0 | 0 | 0 | 12 | 156 | 0 | 0 | 498 | 332 | 0 | 15.655° | ||
169 | 13068.006451127 | 0.000068102 | 0 | 0 | 13 | 155 | 1 | 0 | 501 | 334 | 0 | 15.537° | ||
170 | 13226.681078541 | 0 | 0 | 0 | 12 | 158 | 0 | 0 | 504 | 336 | 0 | 15.569° | ||
171 | 13386.355930717 | 0 | 0 | 0 | 12 | 159 | 0 | 0 | 507 | 338 | 0 | 15.497° | ||
172 | 13547.018108787 | 0.000547291 | 0 | 0 | 14 | 156 | 2 | 0 | 510 | 340 | 0 | 15.292° | ||
173 | 13708.635243034 | 0.000286544 | 0 | 0 | 12 | 161 | 0 | 0 | 513 | 342 | 0 | 15.225° | ||
174 | 13871.187092292 | 0 | 0 | 0 | 12 | 162 | 0 | 0 | 516 | 344 | 0 | 15.366° | ||
175 | 14034.781306929 | 0.000026686 | 0 | 0 | 12 | 163 | 0 | 0 | 519 | 346 | 0 | 15.252° | ||
176 | 14199.354775632 | 0.000283978 | 0 | 0 | 12 | 164 | 0 | 0 | 522 | 348 | 0 | 15.101° | ||
177 | 14364.837545298 | 0 | 0 | 0 | 12 | 165 | 0 | 0 | 525 | 350 | 0 | 15.269° | ||
178 | 14531.309552587 | 0 | 0 | 0 | 12 | 166 | 0 | 0 | 528 | 352 | 0 | 15.145° | ||
179 | 14698.754594220 | 0.000125113 | 0 | 0 | 13 | 165 | 1 | 0 | 531 | 354 | 0 | 14.968° | ||
180 | 14867.099927525 | 0 | 0 | 0 | 12 | 168 | 0 | 0 | 534 | 356 | 0 | 15.067° | ||
181 | 15036.467239769 | 0.000304193 | 0 | 0 | 12 | 169 | 0 | 0 | 537 | 358 | 0 | 15.002° | ||
182 | 15206.730610906 | 0 | 0 | 0 | 12 | 170 | 0 | 0 | 540 | 360 | 0 | 15.155° | ||
183 | 15378.166571028 | 0.000467899 | 0 | 0 | 12 | 171 | 0 | 0 | 543 | 362 | 0 | 14.747° | ||
184 | 15550.421450311 | 0 | 0 | 0 | 12 | 172 | 0 | 0 | 546 | 364 | 0 | 14.932° | ||
185 | 15723.720074072 | 0.000389762 | 0 | 0 | 12 | 173 | 0 | 0 | 549 | 366 | 0 | 14.775° | ||
186 | 15897.897437048 | 0.000389762 | 0 | 0 | 12 | 174 | 0 | 0 | 552 | 368 | 0 | 14.739° | ||
187 | 16072.975186320 | 0 | 0 | 0 | 12 | 175 | 0 | 0 | 555 | 370 | 0 | 14.848° | ||
188 | 16249.222678879 | 0 | 0 | 0 | 12 | 176 | 0 | 0 | 558 | 372 | 0 | 14.740° | ||
189 | 16426.371938862 | 0.000020732 | 0 | 0 | 12 | 177 | 0 | 0 | 561 | 374 | 0 | 14.671° | ||
190 | 16604.428338501 | 0.000586804 | 0 | 0 | 12 | 178 | 0 | 0 | 564 | 376 | 0 | 14.501° | ||
191 | 16783.452219362 | 0.001129202 | 0 | 0 | 13 | 177 | 1 | 0 | 567 | 378 | 0 | 14.195° | ||
192 | 16963.338386460 | 0 | 0 | 0 | 12 | 180 | 0 | 0 | 570 | 380 | 0 | 14.819° | geodesic sphere {3,5+}3,2 | |
193 | 17144.564740880 | 0.000985192 | 0 | 0 | 12 | 181 | 0 | 0 | 573 | 382 | 0 | 14.144° | ||
194 | 17326.616136471 | 0.000322358 | 0 | 0 | 12 | 182 | 0 | 0 | 576 | 384 | 0 | 14.350° | ||
195 | 17509.489303930 | 0 | 0 | 0 | 12 | 183 | 0 | 0 | 579 | 386 | 0 | 14.375° | ||
196 | 17693.460548082 | 0.000315907 | 0 | 0 | 12 | 184 | 0 | 0 | 582 | 388 | 0 | 14.251° | ||
197 | 17878.340162571 | 0 | 0 | 0 | 12 | 185 | 0 | 0 | 585 | 390 | 0 | 14.147° | ||
198 | 18064.262177195 | 0.000011149 | 0 | 0 | 12 | 186 | 0 | 0 | 588 | 392 | 0 | 14.237° | ||
199 | 18251.082495640 | 0.000534779 | 0 | 0 | 12 | 187 | 0 | 0 | 591 | 394 | 0 | 14.153° | ||
200 | 18438.842717530 | 0 | 0 | 0 | 12 | 188 | 0 | 0 | 594 | 396 | 0 | 14.222° | ||
201 | 18627.591226244 | 0.001048859 | 0 | 0 | 13 | 187 | 1 | 0 | 597 | 398 | 0 | 13.830° | ||
202 | 18817.204718262 | 0 | 0 | 0 | 12 | 190 | 0 | 0 | 600 | 400 | 0 | 14.189° | ||
203 | 19007.981204580 | 0.000600343 | 0 | 0 | 12 | 191 | 0 | 0 | 603 | 402 | 0 | 13.977° | ||
204 | 19199.540775603 | 0 | 0 | 0 | 12 | 192 | 0 | 0 | 606 | 404 | 0 | 14.291° | ||
212 | 20768.053085964 | 0 | 0 | 0 | 12 | 200 | 0 | 0 | 630 | 420 | 0 | 14.118° | geodesic sphere {3,5+}4,1 | |
214 | 21169.910410375 | 0 | 0 | 0 | 12 | 202 | 0 | 0 | 636 | 424 | 0 | 13.771° | ||
216 | 21575.596377869 | 0 | 0 | 0 | 12 | 204 | 0 | 0 | 642 | 428 | 0 | 13.735° | ||
217 | 21779.856080418 | 0 | 0 | 0 | 12 | 205 | 0 | 0 | 645 | 430 | 0 | 13.902° | ||
232 | 24961.252318934 | 0 | 0 | 0 | 12 | 220 | 0 | 0 | 690 | 460 | 0 | 13.260° | ||
255 | 30264.424251281 | 0 | 0 | 0 | 12 | 243 | 0 | 0 | 759 | 506 | 0 | 12.565° | ||
256 | 30506.687515847 | 0 | 0 | 0 | 12 | 244 | 0 | 0 | 762 | 508 | 0 | 12.572° | ||
257 | 30749.941417346 | 0 | 0 | 0 | 12 | 245 | 0 | 0 | 765 | 510 | 0 | 12.672° | ||
272 | 34515.193292681 | 0 | 0 | 0 | 12 | 260 | 0 | 0 | 810 | 540 | 0 | 12.335° | geodesic sphere {3,5+}3,3 | |
282 | 37147.294418462 | 0 | 0 | 0 | 12 | 270 | 0 | 0 | 840 | 560 | 0 | 12.166° | geodesic sphere {3,5+}4,2 | |
292 | 39877.008012909 | 0 | 0 | 0 | 12 | 280 | 0 | 0 | 870 | 580 | 0 | 11.857° | ||
306 | 43862.569780797 | 0 | 0 | 0 | 12 | 294 | 0 | 0 | 912 | 608 | 0 | 11.628° | ||
312 | 45629.313804002 | 0.000306163 | 0 | 0 | 12 | 300 | 0 | 0 | 930 | 620 | 0 | 11.299° | ||
315 | 46525.825643432 | 0 | 0 | 0 | 12 | 303 | 0 | 0 | 939 | 626 | 0 | 11.337° | ||
317 | 47128.310344520 | 0 | 0 | 0 | 12 | 305 | 0 | 0 | 945 | 630 | 0 | 11.423° | ||
318 | 47431.056020043 | 0 | 0 | 0 | 12 | 306 | 0 | 0 | 948 | 632 | 0 | 11.219° | ||
334 | 52407.728127822 | 0 | 0 | 0 | 12 | 322 | 0 | 0 | 996 | 664 | 0 | 11.058° | ||
348 | 56967.472454334 | 0 | 0 | 0 | 12 | 336 | 0 | 0 | 1038 | 692 | 0 | 10.721° | ||
357 | 59999.922939598 | 0 | 0 | 0 | 12 | 345 | 0 | 0 | 1065 | 710 | 0 | 10.728° | ||
358 | 60341.830924588 | 0 | 0 | 0 | 12 | 346 | 0 | 0 | 1068 | 712 | 0 | 10.647° | ||
372 | 65230.027122557 | 0 | 0 | 0 | 12 | 360 | 0 | 0 | 1110 | 740 | 0 | 10.531° | geodesic sphere {3,5+}4,3 | |
382 | 68839.426839215 | 0 | 0 | 0 | 12 | 370 | 0 | 0 | 1140 | 760 | 0 | 10.379° | ||
390 | 71797.035335953 | 0 | 0 | 0 | 12 | 378 | 0 | 0 | 1164 | 776 | 0 | 10.222° | ||
392 | 72546.258370889 | 0 | 0 | 0 | 12 | 380 | 0 | 0 | 1170 | 780 | 0 | 10.278° | ||
400 | 75582.448512213 | 0 | 0 | 0 | 12 | 388 | 0 | 0 | 1194 | 796 | 0 | 10.068° | ||
402 | 76351.192432673 | 0 | 0 | 0 | 12 | 390 | 0 | 0 | 1200 | 800 | 0 | 10.099° | ||
432 | 88353.709681956 | 0 | 0 | 0 | 24 | 396 | 12 | 0 | 1290 | 860 | 0 | 9.556° | ||
448 | 95115.546986209 | 0 | 0 | 0 | 24 | 412 | 12 | 0 | 1338 | 892 | 0 | 9.322° | ||
460 | 100351.763108673 | 0 | 0 | 0 | 24 | 424 | 12 | 0 | 1374 | 916 | 0 | 9.297° | ||
468 | 103920.871715127 | 0 | 0 | 0 | 24 | 432 | 12 | 0 | 1398 | 932 | 0 | 9.120° | ||
470 | 104822.886324279 | 0 | 0 | 0 | 24 | 434 | 12 | 0 | 1404 | 936 | 0 | 9.059° |
According to a conjecture, if is the polyhedron formed by the convex hull of the solution configuation to the Thomson Problem for electrons and is the number of quadrilateral faces of , then has edges.[16][clarification needed]
References
edit- ^ Thomson, Joseph John (March 1904). "On the Structure of the Atom: an Investigation of the Stability and Periods of Oscillation of a number of Corpuscles arranged at equal intervals around the Circumference of a Circle; with Application of the Results to the Theory of Atomic Structure" (PDF). Philosophical Magazine. Series 6. 7 (39): 237–265. doi:10.1080/14786440409463107. Archived from the original (PDF) on 13 December 2013.
- ^ Smale, S. (1998). "Mathematical Problems for the Next Century". Mathematical Intelligencer. 20 (2): 7–15. CiteSeerX 10.1.1.35.4101. doi:10.1007/bf03025291. S2CID 1331144.
- ^ Föppl, L. (1912). "Stabile Anordnungen von Elektronen im Atom". J. Reine Angew. Math. 141 (141): 251–301. doi:10.1515/crll.1912.141.251. S2CID 120309200..
- ^ Schwartz, Richard (2010). "The 5 electron case of Thomson's Problem". arXiv:1001.3702 [math.MG].
- ^ Yudin, V.A. (1992). "The minimum of potential energy of a system of point charges". Discretnaya Matematika. 4 (2): 115–121 (in Russian).; Yudin, V. A. (1993). "The minimum of potential energy of a system of point charges". Discrete Math. Appl. 3 (1): 75–81. doi:10.1515/dma.1993.3.1.75. S2CID 117117450.
- ^ Andreev, N.N. (1996). "An extremal property of the icosahedron". East J. Approximation. 2 (4): 459–462. MR1426716, Zbl 0877.51021
- ^ Atiyah, Michael; Sutcliffe, Paul (2003). "Polyhedra in physics, chemistry and geometry". arXiv:math-ph/0303071.
- ^ Landkof, N. S. Foundations of modern potential theory. Translated from the Russian by A. P. Doohovskoy. Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg, 1972. x+424 pp.
- ^ Hardin, D. P.; Saff, E. B. Discretizing manifolds via minimum energy points. Notices Amer. Math. Soc. 51 (2004), no. 10, 1186–1194
- ^ a b Batagelj, Vladimir; Plestenjak, Bor. "Optimal arrangements of n points on a sphere and in a circle" (PDF). IMFM/TCS. Archived from the original (PDF) on 25 June 2018.
- ^ LaFave Jr, Tim (February 2014). "Discrete transformations in the Thomson Problem". Journal of Electrostatics. 72 (1): 39–43. arXiv:1403.2592. doi:10.1016/j.elstat.2013.11.007. S2CID 119309183.
- ^ Levin, Y.; Arenzon, J. J. (2003). "Why charges go to the Surface: A generalized Thomson Problem". Europhys. Lett. 63 (3): 415. arXiv:cond-mat/0302524. Bibcode:2003EL.....63..415L. doi:10.1209/epl/i2003-00546-1. S2CID 18929981.
- ^ Sir J.J. Thomson, The Romanes Lecture, 1914 (The Atomic Theory)
- ^ LaFave Jr, Tim (2013). "Correspondences between the classical electrostatic Thomson problem and atomic electronic structure". Journal of Electrostatics. 71 (6): 1029–1035. arXiv:1403.2591. doi:10.1016/j.elstat.2013.10.001. S2CID 118480104.
- ^ Kevin Brown. "Min-Energy Configurations of Electrons On A Sphere". Retrieved 2014-05-01.
- ^ "Sloane's A008486 (see the comment from Feb 03 2017)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2017-02-08.
Notes
edit- Whyte, L.L. (1952). "Unique arrangements of points on a sphere". Amer. Math. Monthly. 59 (9): 606–611. doi:10.2307/2306764. JSTOR 2306764.
- Cohn, Harvey (1956). "Stability configurations of electrons on a sphere". Math. Comput. 10 (55): 117–120. doi:10.1090/S0025-5718-1956-0081133-0.
- Goldberg, Michael (1969). "Stability configurations of electrons on a sphere". Math. Comp. 23 (108): 785–786. doi:10.1090/S0025-5718-69-99642-2.
- Erber, T.; Hockney, G. M. (1991). "equilibrium configurations of N equal charges on a sphere". J. Phys. A: Math. Gen. 24 (23): L1369. Bibcode:1991JPhA...24L1369E. doi:10.1088/0305-4470/24/23/008. S2CID 122561279.
- Morris, J. R.; Deaven, D. M.; Ho, K. M. (1996). "Genetic-algorithm energy minimization for point charges on a sphere". Phys. Rev. B. 53 (4): R1740–R1743. Bibcode:1996PhRvB..53.1740M. CiteSeerX 10.1.1.28.93. doi:10.1103/PhysRevB.53.R1740. PMID 9983695.
- Erber, T.; Hockney, G. M. (1997). "Complex Systems: Equilibrium Configurations of Equal Charges on a Sphere ". Advances in Chemical Physics. Vol. 98. pp. 495–594. doi:10.1002/9780470141571.ch5. ISBN 9780470141571..
- Altschuler, E. L.; Williams, T. J.; Ratner, E. R.; Tipton, R.; Stong, R.; Dowla, F.; Wooten, F. (1997). "Possible global minimum lattice configurations for Thomson's problem of charges on a sphere". Phys. Rev. Lett. 78 (14): 2681–2685. Bibcode:1997PhRvL..78.2681A. doi:10.1103/PhysRevLett.78.2681.
- Bowick, M.; Cacciuto, A.; Nelson, D. R.; Travesset, A. (2002). "Crystalline order on a sphere and the generalized Thomson Problem". Phys. Rev. Lett. 89 (18): 249902. arXiv:cond-mat/0206144. Bibcode:2002PhRvL..89r5502B. doi:10.1103/PhysRevLett.89.185502. PMID 12398614. S2CID 20362989.
- Dragnev, P. D.; Legg, D. A.; Townsend, D. W. (2002). "Discrete logarithmic energy on the sphere". Pacific J. Math. 207 (2): 345–358. doi:10.2140/pjm.2002.207.345..
- Katanforoush, A.; Shahshahani, M. (2003). "Distributing points on the sphere. I". Exper. Math. 12 (2): 199–209. doi:10.1080/10586458.2003.10504492. S2CID 7306812.
- Wales, David J.; Ulker, Sidika (2006). "Structure and dynamics of spherical crystals characterized for the Thomson problem". Phys. Rev. B. 74 (21): 212101. Bibcode:2006PhRvB..74u2101W. doi:10.1103/PhysRevB.74.212101. S2CID 119932997. Configurations reprinted in Wales, D. J.; Ulker, S. "The Cambridge cluster database".
- Slosar, A.; Podgornik, R. (2006). "On the connected-charges Thomson problem". Europhys. Lett. 75 (4): 631. arXiv:cond-mat/0606765. Bibcode:2006EL.....75..631S. doi:10.1209/epl/i2006-10146-1. S2CID 119005054.
- Cohn, Henry; Kumar, Abhinav (2007). "Universally optimal distribution of points on spheres". J. Amer. Math. Soc. 20 (1): 99–148. arXiv:math/0607446. Bibcode:2007JAMS...20...99C. doi:10.1090/S0894-0347-06-00546-7. S2CID 26614691.
- Wales, D. J.; McKay, H.; Altschuler, E. L. (2009). "Defect motifs for spherical topologies". Phys. Rev. B. 79 (22): 224115. Bibcode:2009PhRvB..79v4115W. doi:10.1103/PhysRevB.79.224115.. Configurations reproduced in Wales, D. J.; Ulker, S. "The Cambridge cluster database".
- Ridgway, W. J. M.; Cheviakov, A. F. (2018). "An iterative procedure for finding locally and globally optimal arrangements of particles on the unit sphere". Comput. Phys. Commun. 233: 84–109. Bibcode:2018CoPhC.233...84R. doi:10.1016/j.cpc.2018.03.029. S2CID 52097788.
- Cecka, Cris; Bowick, Mark J.; Middleton, Alan A. "Thomson Problem @ S.U." Archived from the original on 2018-04-09. Retrieved 2009-11-24.
- This webpage contains many more electron configurations with the lowest known energy: https://www.hars.us.