Let
z
=
x
+
i
y
{\displaystyle z=x+iy}
and
z
¯
=
x
−
i
y
{\displaystyle {\bar {z}}\ =x-iy}
where
x
{\displaystyle x}
and
y
{\displaystyle y}
are real .
Let
f
(
z
)
=
u
(
x
,
y
)
+
i
v
(
x
,
y
)
{\displaystyle f(z)=u(x,y)+iv(x,y)}
be any holomorphic function .
Example 1:
z
4
=
(
x
4
−
6
x
2
y
2
+
y
4
)
+
i
(
4
x
3
y
−
4
x
y
3
)
{\displaystyle z^{4}=(x^{4}-6x^{2}y^{2}+y^{4})+i(4x^{3}y-4xy^{3})}
Example 2:
exp
(
i
z
)
=
cos
(
x
)
exp
(
−
y
)
+
i
sin
(
x
)
exp
(
−
y
)
{\displaystyle \exp(iz)=\cos(x)\exp(-y)+i\sin(x)\exp(-y)}
In his article,[ 1] Milne-Thomson considers the problem of finding
f
(
z
)
{\displaystyle f(z)}
when 1.
u
(
x
,
y
)
{\displaystyle u(x,y)}
and
v
(
x
,
y
)
{\displaystyle v(x,y)}
are given, 2.
u
(
x
,
y
)
{\displaystyle u(x,y)}
is given and
f
(
z
)
{\displaystyle f(z)}
is real on the real axis, 3. only
u
(
x
,
y
)
{\displaystyle u(x,y)}
is given, 4. only
v
(
x
,
y
)
{\displaystyle v(x,y)}
is given. He is really interested in problems 3 and 4, but the answers to the easier problems 1 and 2 are needed for proving the answers to problems 3 and 4.
Problem :
u
(
x
,
y
)
{\displaystyle u(x,y)}
and
v
(
x
,
y
)
{\displaystyle v(x,y)}
are known; what is
f
(
z
)
{\displaystyle f(z)}
?
Answer :
f
(
z
)
=
u
(
z
,
0
)
+
i
v
(
z
,
0
)
{\displaystyle f(z)=u(z,0)+iv(z,0)}
In words: the holomorphic function
f
(
z
)
{\displaystyle f(z)}
can be obtained by putting
x
=
z
{\displaystyle x=z}
and
y
=
0
{\displaystyle y=0}
in
u
(
x
,
y
)
+
i
v
(
x
,
y
)
{\displaystyle u(x,y)+iv(x,y)}
.
Example 1: with
u
(
x
,
y
)
=
x
4
−
6
x
2
y
2
+
y
4
{\displaystyle u(x,y)=x^{4}-6x^{2}y^{2}+y^{4}}
and
v
(
x
,
y
)
=
4
x
3
y
−
4
x
y
3
{\displaystyle v(x,y)=4x^{3}y-4xy^{3}}
we obtain
f
(
z
)
=
z
4
{\displaystyle f(z)=z^{4}}
.
Example 2: with
u
(
x
,
y
)
=
cos
(
x
)
exp
(
−
y
)
{\displaystyle u(x,y)=\cos(x)\exp(-y)}
and
v
(
x
,
y
)
=
sin
(
x
)
exp
(
−
y
)
{\displaystyle v(x,y)=\sin(x)\exp(-y)}
we obtain
f
(
z
)
=
cos
(
z
)
+
i
sin
(
z
)
=
exp
(
i
z
)
{\displaystyle f(z)=\cos(z)+i\sin(z)=\exp(iz)}
.
Proof :
From the first pair of definitions
x
=
z
+
z
¯
2
{\displaystyle x={\frac {z+{\bar {z}}}{2}}}
and
y
=
z
−
z
¯
2
i
{\displaystyle y={\frac {z-{\bar {z}}}{2i}}}
.
Therefore
f
(
z
)
=
u
(
z
+
z
¯
2
,
z
−
z
¯
2
i
)
+
i
v
(
z
+
z
¯
2
,
z
−
z
¯
2
i
)
{\displaystyle f(z)=u\left({\frac {z+{\bar {z}}}{2}}\ ,{\frac {z-{\bar {z}}}{2i}}\right)+iv\left({\frac {z+{\bar {z}}}{2}}\ ,{\frac {z-{\bar {z}}}{2i}}\right)}
.
This is an identity even when
x
{\displaystyle x}
and
y
{\displaystyle y}
are not real, i.e. the two variables
z
{\displaystyle z}
and
z
¯
{\displaystyle {\bar {z}}\ }
may be considered independent. Putting
z
¯
=
z
{\displaystyle {\bar {z}}=z}
we get
f
(
z
)
=
u
(
z
,
0
)
+
i
v
(
z
,
0
)
{\displaystyle f(z)=u(z,0)+iv(z,0)}
.
Problem :
u
(
x
,
y
)
{\displaystyle u(x,y)}
is known,
v
(
x
,
y
)
{\displaystyle v(x,y)}
is unknown,
f
(
x
+
i
0
)
{\displaystyle f(x+i0)}
is real; what is
f
(
z
)
{\displaystyle f(z)}
?
Answer :
f
(
z
)
=
u
(
z
,
0
)
{\displaystyle f(z)=u(z,0)}
.
Only example 1 applies here: with
u
(
x
,
y
)
=
x
4
−
6
x
2
y
2
+
y
4
{\displaystyle u(x,y)=x^{4}-6x^{2}y^{2}+y^{4}}
we obtain
f
(
z
)
=
z
4
{\displaystyle f(z)=z^{4}}
.
Proof : "
f
(
x
+
i
0
)
{\displaystyle f(x+i0)}
is real" means
v
(
x
,
0
)
=
0
{\displaystyle v(x,0)=0}
. In this case the answer to problem 1 becomes
f
(
z
)
=
u
(
z
,
0
)
{\displaystyle f(z)=u(z,0)}
.
Problem :
u
(
x
,
y
)
{\displaystyle u(x,y)}
is known,
v
(
x
,
y
)
{\displaystyle v(x,y)}
is unknown; what is
f
(
z
)
{\displaystyle f(z)}
?
Answer :
f
(
z
)
=
u
(
z
,
0
)
−
i
∫
u
y
(
z
,
0
)
d
z
{\displaystyle f(z)=u(z,0)-i\int u_{y}(z,0)dz}
(where
u
y
(
x
,
y
)
{\displaystyle u_{y}(x,y)}
is the partial derivative of
u
(
x
,
y
)
{\displaystyle u(x,y)}
with respect to
y
{\displaystyle y}
).
Example 1: with
u
(
x
,
y
)
=
x
4
−
6
x
2
y
2
+
y
4
{\displaystyle u(x,y)=x^{4}-6x^{2}y^{2}+y^{4}}
and
u
y
(
x
,
y
)
=
−
12
x
2
y
+
4
y
3
{\displaystyle u_{y}(x,y)=-12x^{2}y+4y^{3}}
we obtain
f
(
z
)
=
z
4
+
i
C
{\displaystyle f(z)=z^{4}+iC}
with real but undetermined
C
{\displaystyle C}
.
Example 2: with
u
(
x
,
y
)
=
cos
(
x
)
exp
(
−
y
)
{\displaystyle u(x,y)=\cos(x)\exp(-y)}
and
u
y
(
x
,
y
)
=
−
cos
(
x
)
exp
(
−
y
)
{\displaystyle u_{y}(x,y)=-\cos(x)\exp(-y)}
we obtain
f
(
z
)
=
cos
(
z
)
+
i
∫
cos
(
z
)
d
z
=
cos
(
z
)
+
i
(
sin
(
z
)
+
C
)
=
exp
(
i
z
)
+
i
C
{\displaystyle f(z)=\cos(z)+i\int \cos(z)dz=\cos(z)+i(\sin(z)+C)=\exp(iz)+iC}
.
Proof : This follows from
f
(
z
)
=
u
(
z
,
0
)
+
i
∫
v
x
(
z
,
0
)
d
z
{\displaystyle f(z)=u(z,0)+i\int v_{x}(z,0)dz}
and the 2nd Cauchy-Riemann equation
u
y
(
x
,
y
)
=
−
v
x
(
x
,
y
)
{\displaystyle u_{y}(x,y)=-v_{x}(x,y)}
.
Problem :
u
(
x
,
y
)
{\displaystyle u(x,y)}
is unknown,
v
(
x
,
y
)
{\displaystyle v(x,y)}
is known; what is
f
(
z
)
{\displaystyle f(z)}
?
Answer :
f
(
z
)
=
∫
v
y
(
z
,
0
)
d
z
+
i
v
(
z
,
0
)
{\displaystyle f(z)=\int v_{y}(z,0)dz+iv(z,0)}
.
Example 1: with
v
(
x
,
y
)
=
4
x
3
y
−
4
x
y
3
{\displaystyle v(x,y)=4x^{3}y-4xy^{3}}
and
v
y
(
x
,
y
)
=
4
x
3
−
12
x
y
2
{\displaystyle v_{y}(x,y)=4x^{3}-12xy^{2}}
we obtain
f
(
z
)
=
∫
4
z
3
d
z
+
i
0
=
z
4
+
C
{\displaystyle f(z)=\int 4z^{3}dz+i0=z^{4}+C}
with real but undetermined
C
{\displaystyle C}
.
Example 2: with
v
(
x
,
y
)
=
sin
(
x
)
exp
(
−
y
)
{\displaystyle v(x,y)=\sin(x)\exp(-y)}
and
v
y
(
x
,
y
)
=
−
sin
(
x
)
exp
(
−
y
)
{\displaystyle v_{y}(x,y)=-\sin(x)\exp(-y)}
we obtain
f
(
z
)
=
−
∫
sin
(
z
)
d
z
+
i
sin
(
z
)
=
cos
(
z
)
+
C
+
i
sin
(
z
)
=
exp
(
i
z
)
+
C
{\displaystyle f(z)=-\int \sin(z)dz+i\sin(z)=\cos(z)+C+i\sin(z)=\exp(iz)+C}
.
Proof : This follows from
f
(
z
)
=
∫
u
x
(
z
,
0
)
d
z
+
i
v
(
z
,
0
)
{\displaystyle f(z)=\int u_{x}(z,0)dz+iv(z,0)}
and the 1st Cauchy-Riemann equation
u
x
(
x
,
y
)
=
v
y
(
x
,
y
)
{\displaystyle u_{x}(x,y)=v_{y}(x,y)}
.