MEMS electrothermal actuator

(Redirected from MEMS thermal actuator)

A MEMS electrothermal actuator is a microelectromechanical device that typically generates motion by thermal expansion. It relies on the equilibrium between the thermal energy produced by an applied electric current and the heat dissipated into the environment or the substrate. Its working is based on resistive heating and generally there are three types of MEMS electrothermal actuators named as hot and cold arm, bimorph designs and chevron[2][3]. Fabrication processes for electrothermal actuators include deep X-ray lithography, LIGA (lithography, electroplating, and molding), and deep reactive ion etching (DRIE). These techniques allow for the creation of devices with high aspect ratios[4][5]. Additionally, these actuators are relatively easy to fabricate and are compatible with standard Integrated Circuits (IC) and MEMS fabrication methods. These electrothermal actuators can be utilized in different kind of MEMS devices like microgrippers, micromirrors, tunable inductors and resonators[6][7].

3D view of MEMS electrothermal actuator[1]

Types of MEMS electrothermal actuators

edit

Generally, there are two types of MEMS electrothermal actuators one is Asymmetric also known as hot and cold arm actuator its working principle is based on the unequal thermal expansion of its components, The second type of electrothermal actuators is Symmetric also known as chevron actuators and their operation is based on the total thermal expansion and their output motion is limited to one direction. The third type of MEMS electrothermal actuator is the bimorph actuator and their motions relies on the varying coefficients of thermal expansion of the materials used in their fabrication[8].

Asymmetric (bimorph, U-Shaped)

edit
 
U-shaped hot-and-cold-arm actuator[9]

An asymmetric MEMS electrothermal actuator, often referred to as a bimorph or U-shaped thermal actuator, consists of a narrow "hot" arm and a wider "cold" arm connected in series to an electrical circuit. When current flows through the actuator, Joule heating occurs, producing more heat in the narrow arm due to its higher electrical resistance, resulting in greater thermal expansion compared to the wide arm. This differential thermal expansion creates a bending moment, causing the actuator to bend towards the cold arm. This design allows for precise actuation and is suitable for various MEMS applications, including micro and nano manipulation tools like microgrippers and micro positioners[10][11]. These tools are essential for tasks such as micro assembly, biological cell manipulation, and material characterization, offering advantages such as low driving voltages and easy control[12][13]. Various microgripper designs have been developed to enhance performance, including different arm widths and lengths[14], electro-thermo-compliant actuators[15], three-beam actuators[16], folded and meander heaters[17], sandwiched structures[18], inclined arms[19], and curved hot arms[20]. These actuators are used in applications requiring precise control of temperature and force, such as handling fragile micro-particles and single-cell manipulation. Additionally, they are employed in switching mechanisms, optical devices, and bi-directional actuators for applications like RF MEMS switches and micro-positioning platforms, providing larger displacement ranges and improved functionality[21][22][23].

Symmetric (bent beam, chevron)

edit
 
Schematic of chevron electrothermal actuator with eight pairs of beams[24]

The Symmetric/Chevron actuator, also known as the V-shape or bent-beam actuator, is a widely used in-plane electrothermal actuator. It features a V-shaped design but can also be found in other shapes. Unlike the differential expansion in hot-and-cold-arm actuators, the Chevron actuator relies on the total thermal expansion for actuation. It consists of two equal slanted beams connected at an apex and anchored to the substrate, forming a single conduction path. When current passes through the beams, resistive heating causes thermal expansion, pushing the apex forward. A comprehensive deflection model for this actuator involves solving a transcendental function numerically to determine the tip displacement, influenced by factors like beam length, pre-bending angle, and temperature increase[25]. The critical parameters include the beam length, pre-bending angle, and thickness. Smaller inclination angles yield larger displacements but risk out-of-plane buckling and fabrication issues. The stiffness and output force can be increased by stacking multiple beams[26]. Chevron actuators are versatile, being used in MEMS applications like micro-switches, microgrippers, and material characterization tools. They can produce substantial gripping force but with limited lateral displacement[27]. To amplify displacement, mechanical amplifiers are often used. Applications include pick-and-place operations for nanomaterials[28], biological cell manipulation[29], and RF MEMS switches[30], where the actuator's stability and high force are advantageous. Variants like Z-shape[31] and kink[32] actuators offer alternative designs for specific needs, such as larger displacement or easier fabrication. Cascaded Chevron actuators enhance displacement further by connecting multiple stages, albeit with increased buckling risk. Applications include micro-engines and advanced microgrippers[33]. These actuators provide significant advantages over other types due to their rectilinear motion, high output force, and low driving voltage, making them suitable for a wide range of precise, small-scale tasks.[34][35]

Bimorph

edit
 
Bimorph microcantilever actuator[36]

The bimorph design is a prominent type of electrothermal actuator consisting of two or more layers of different materials with varied coefficients of thermal expansion (CTE)[37]. When subjected to thermal stimuli, the differential expansion causes the actuator to bend, producing out-of-plane displacement. This makes bimorph actuators ideal for applications where in-plane actuators are unsuitable, offering a broad range of applications[38]. The deflection mechanism relies on material properties, such as Young’s modulus and CTE mismatch, as well as the thickness ratio of the layers and the beam's geometrical parameters. A basic bimorph cantilever consists of two layers: one with a high CTE and another with a low CTE. Joule heating induces more expansion in the high-CTE layer, causing the structure to bend towards the low-CTE layer. The theoretical models for the behavior of bimorph actuators, such as tip deflection and output force, are well-established. For a simple two-layer cantilever, the curvature due to thermal expansion mismatch can be calculated using specific formulas involving temperature change, CTE, width, thickness, and Young’s modulus of each layer. The choice of materials for bimorph actuators is diverse, with metals and polymers commonly used for high-CTE layers, and dielectrics or semiconductors for low-CTE layers. Recent advancements include the use of carbon materials like graphene, which has a negative CTE, and graphene/polymer composites[39].

Bimorph actuators are typically designed for out-of-plane actuation due to the planar deposition of layers, innovative designs such as the "vertical bimorph" and lateral actuators have been developed to achieve in-plane actuation using techniques like angled electron-beam evaporation and post-CMOS micromachining[40]. Bimorph actuators find applications in various fields. In micromanipulation, conventional bimorph actuators are less feasible for in-plane microgrippers[41], but novel designs like a four-finger microgripper provide stable and reliable gripping by curling upwards when open. In micromirrors[42], bimorph actuators enable large displacement with low power consumption[43], ideal for tilting and piston motion in applications like projection displays, optical switches, barcode readers, biomedical imaging, tunable lasers, spectroscopy, and adaptive optics[44]. They are also used in atomic force microscopy (AFM)[45] and scanning probe nanolithography (SPN)[46], offering nanometer-scale resolution imaging and efficient patterning. Additionally, bimorph actuators are utilized in tunable RF devices due to their precise control and actuation capabilities. However, challenges such as shear stress at layer interfaces must be managed to ensure the longevity of bimorph devices[47][48].

Advantages

edit

Electrothermal actuators offer several advantages over other types, making them valuable components for MEMS. They operate with relatively low driving voltages yet can generate large forces and displacements, either parallel or perpendicular to the substrate[49]. Unlike actuators that rely on electrostatic or magnetic fields, electrothermal actuators are suitable for manipulating biological samples[50] and electronic chips[51]. These actuators are also easy to control, as they do not exhibit significant hysteresis like piezoresistive and shape memory alloy (SMA) actuators. Electrothermal actuators are scalable in size and typically have a more compact structure compared to electrostatic actuators, which use large arrays of comb drives, or electromagnetic and SMA actuators, which are challenging to implement on a small scale. They are versatile in their operating environments, functioning well in air, vacuum, dusty conditions, liquid media, and under the electron beam in scanning electron microscopy (SEM). However, electrothermal actuators generally have low switching speeds due to the large time constants of thermal processes. Despite this, high-frequency thermal actuation has been demonstrated [52]. The method of electrothermal excitation is also attractive for actuation in resonance mode, particularly for microcantilever-based sensing and probing applications. MEMS resonators using this method have shown high-quality factors and wide frequency tuning ranges[53].

Other types of MEMS Actuators

edit

See also

edit

References

edit
  1. ^ Sciberras, Thomas; Demicoli, Marija; Grech, Ivan; Mallia, Bertram; Mollicone, Pierluigi; Sammut, Nicholas (2021-12-22). "Coupled Finite Element-Finite Volume Multi-Physics Analysis of MEMS Electrothermal Actuators". Micromachines. 13 (1): 8. doi:10.3390/mi13010008. ISSN 2072-666X. PMC 8781855. PMID 35056172.
  2. ^ Ali, Muhammad Mustajab; Iqbal, Sohail (2024-04-30). "Design and analysis of novel microelectromechanical system based microgripper for manipulating microbiological species and micro objects". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. doi:10.1177/09544062241245545. ISSN 0954-4062.
  3. ^ Ren, Anrun; Ding, Yingtao; Yang, Hengzhang; Pan, Teng; Zhang, Ziyue; Xie, Huikai (2024-01-21). "An Electrothermal Micromirror Array Integrated with Thermal Convection-Based Mirror Position Sensors". 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE. pp. 170–173. doi:10.1109/MEMS58180.2024.10439487. ISBN 979-8-3503-5792-9.
  4. ^ Jeong-Il Kim; Peroulis, D. (2009-09-09). "Tunable MEMS Spiral Inductors With Optimized RF Performance and Integrated Large-Displacement Electrothermal Actuators". IEEE Transactions on Microwave Theory and Techniques. 57 (9): 2276–2283. Bibcode:2009ITMTT..57.2276K. doi:10.1109/TMTT.2009.2027153. ISSN 0018-9480.
  5. ^ Jiang, Liudi; Cheung, R.; Hedley, J.; Hassan, M.; Harris, A.J.; Burdess, J.S.; Mehregany, M.; Zorman, C.A. (2006-04-19). "SiC cantilever resonators with electrothermal actuation". Sensors and Actuators A: Physical. 128 (2): 376–386. Bibcode:2006SeAcA.128..376J. doi:10.1016/j.sna.2006.01.045. ISSN 0924-4247.
  6. ^ Park, J.S.; Chu, L.L.; Oliver, A.D.; Gianchandani, Y.B. (2001). "Bent-beam electrothermal actuators-Part II: Linear and rotary microengines". Journal of Microelectromechanical Systems. 10 (2): 255–262. doi:10.1109/84.925774.
  7. ^ Maloney, J.M.; Schreiber, D.S.; DeVoe, D.L. (2004). "Large-force electrothermal linear micromotors" (PDF). J. Micromech. Microeng. 14 (2): 226. Bibcode:2004JMiMi..14..226M. doi:10.1088/0960-1317/14/2/009. S2CID 250844848.
  8. ^ Potekhina, Alissa; Wang, Changhai (2019). "Review of Electrothermal Actuators and Applications". Actuators. 8 (4): 69. doi:10.3390/act8040069. ISSN 2076-0825.
  9. ^ Hickey, Ryan; Kujath, Marek; Hubbard, Ted (2002-05-01). "Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 20 (3): 971–974. Bibcode:2002JVSTA..20..971H. doi:10.1116/1.1468654. ISSN 0734-2101.
  10. ^ Hubbard, Neal B.; Culpepper, Martin L.; Howell, Larry L. (2006-11-01). "Actuators for Micropositioners and Nanopositioners". Applied Mechanics Reviews. 59 (6): 324–334. Bibcode:2006ApMRv..59..324H. doi:10.1115/1.2345371. ISSN 0003-6900.
  11. ^ Cecil *, J.; Vasquez, D.; Powell, D. (2005-02-15). "A review of gripping and manipulation techniques for micro-assembly applications". International Journal of Production Research. 43 (4): 819–828. doi:10.1080/00207540512331311813. ISSN 0020-7543.
  12. ^ Yang, Sijie; Xu, Qingsong (2017-10-01). "A review on actuation and sensing techniques for MEMS-based microgrippers". Journal of Micro-Bio Robotics. 13 (1): 1–14. doi:10.1007/s12213-017-0098-2. ISSN 2194-6426.
  13. ^ Dellaert, Dries; Doutreloigne, Jan (2016-05-06). "A thermally-actuated latching MEMS switch matrix and driver chip for an automated distribution frame". Mechatronics. 40: 287–292. doi:10.1016/j.mechatronics.2016.05.011. ISSN 0957-4158.
  14. ^ Pan, Chi Shiang; Hsu, Wensyang (1997-03-01). "An electro-thermally and laterally driven polysilicon microactuator". Journal of Micromechanics and Microengineering. 7 (1): 7–13. Bibcode:1997JMiMi...7....7S. doi:10.1088/0960-1317/7/1/003. ISSN 0960-1317.
  15. ^ Moulton, Timothy; Ananthasuresh, G.K (2000-12-04). "Micromechanical devices with embedded electro-thermal-compliant actuation". Sensors and Actuators A: Physical. 90 (1–2): 38–48. doi:10.1016/s0924-4247(00)00563-x. ISSN 0924-4247.
  16. ^ Ivanova, Katerina; Ivanov, Tzvetan; Badar, Ali; Volland, Burkhard E.; Rangelow, Ivo W.; Andrijasevic, Daniela; Sümecz, Franz; Fischer, Stephanie; Spitzbart, Manfred; Brenner, Werner; Kostic, Ivan (2006-02-13). "Thermally driven microgripper as a tool for micro assembly". Microelectronic Engineering. 83 (4–9): 1393–1395. doi:10.1016/j.mee.2006.01.072. ISSN 0167-9317.
  17. ^ Solano, Belen; Wood, David (2007-02-03). "Design and testing of a polymeric microgripper for cell manipulation". Microelectronic Engineering. 84 (5–8): 1219–1222. doi:10.1016/j.mee.2007.01.153. ISSN 0167-9317.
  18. ^ Voicu, R.; Muller, R.; Eftime, L. (2008-05-07), Design Optimization for an Electro-Thermally Actuated Polymeric Microgripper, arXiv:0805.0901
  19. ^ Khazaai, Jay J.; Qu, Hongwei; Shillor, Meir; Smith, Lorenzo (2012-01-12). "Design and fabrication of electro-thermally activated micro gripper with large tip opening and holding force". 2011 IEEE SENSORS Proceedings. IEEE. pp. 1445–1448. doi:10.1109/icsens.2011.6127276. ISBN 978-1-4244-9289-3.
  20. ^ Al-Zandi, Muaiyd H. M.; Wang, Changhai; Voicu, Rodica; Muller, Raluca (2018-01-01). "Measurement and characterisation of displacement and temperature of polymer based electrothermal microgrippers". Microsystem Technologies. 24 (1): 379–387. doi:10.1007/s00542-017-3298-8. ISSN 1432-1858.
  21. ^ Aia, Wenji; Xu, Qingsong (2014-01-25). "Overview of flexure-based compliant microgrippers". Advances in Robotics Research. 1 (1): 1–19. doi:10.12989/arr.2014.1.1.001. ISSN 2287-4976.
  22. ^ Yan, Dong; Khajepour, Amir; Mansour, Raafat (2003-03-01). "Modeling of two-hot-arm horizontal thermal actuator". Journal of Micromechanics and Microengineering. 13 (2): 312–322. Bibcode:2003JMiMi..13..312Y. doi:10.1088/0960-1317/13/2/321. ISSN 0960-1317.
  23. ^ Cecil, J.; Powell, Derek; Vasquez, Daniel (2007-10-01). "Assembly and manipulation of micro devices—A state of the art survey". Robotics and Computer-Integrated Manufacturing. 23 (5): 580–588. doi:10.1016/j.rcim.2006.05.010. ISSN 0736-5845.
  24. ^ Vargas-Chable, Pedro; Mireles Jr-Garcia, Jose; Rodriguez-Fuentes, Sahiril Fernanda; Valle-Morales, Samuel Isai; Tecpoyotl-Torres, Margarita (2020-12-15). "Microgripper Based on Simple Compliance Configurations, Improved by Using Parameterization". Actuators. 9 (4): 140. doi:10.3390/act9040140. ISSN 2076-0825.
  25. ^ Enikov, E.T.; Kedar, S.S.; Lazarov, K.V. (2005-08-08). "Analytical model for analysis and design of V-shaped thermal microactuators". Journal of Microelectromechanical Systems. 14 (4): 788–798. doi:10.1109/JMEMS.2005.845449. ISSN 1057-7157.
  26. ^ Kwan, Alex Man Ho; Song, Sichao; Lu, Xing; Lu, Lei; Teh, Ying-Khai; Teh, Ying-Fei; Chong, Eddie Wing Cheung; Gao, Yan; Hau, William; Zeng, Fan; Wong, Man; Huang, Chunmei; Taniyama, Akira; Makino, Yoshihide; Nishino, So (2012-02-02). "Improved Designs for an Electrothermal In-Plane Microactuator". Journal of Microelectromechanical Systems. 21 (3): 586–595. doi:10.1109/JMEMS.2012.2185820. ISSN 1057-7157.
  27. ^ Chu, Larry L; Gianchandani, Yogesh B (2003-03-01). "A micromachined 2D positioner with electrothermal actuation and sub-nanometer capacitive sensing". Journal of Micromechanics and Microengineering. 13 (2): 279–285. Bibcode:2003JMiMi..13..279C. doi:10.1088/0960-1317/13/2/316. hdl:2027.42/49040. ISSN 0960-1317.
  28. ^ Andersen, Karin. N.; Carlson, Kenneth; Petersen, Dirch H.; Mølhave, Kristian; Eichhorn, Volkmar; Fatikow, Sergej; Bøggild, Peter (2008-05-01). "Electrothermal microgrippers for pick-and-place operations". Microelectronic Engineering. Proceedings of the Micro- and Nano-Engineering 2007 Conference. 85 (5): 1128–1130. doi:10.1016/j.mee.2007.12.080. ISSN 0167-9317.
  29. ^ Zhang, Ran; Chu, Jinkui; Wang, Haixiang; Chen, Zhaopeng (2013-01-01). "A multipurpose electrothermal microgripper for biological micro-manipulation". Microsystem Technologies. 19 (1): 89–97. doi:10.1007/s00542-012-1567-0. ISSN 1432-1858.
  30. ^ Nordquist, C.D.; Baker, M.S.; Kraus, G.M.; Czaplewski, D.A.; Patrizi, G.A. (2009-05-26). "Poly-Silicon Based Latching RF MEMS Switch". IEEE Microwave and Wireless Components Letters. 19 (6): 380–382. doi:10.1109/LMWC.2009.2020025. ISSN 1531-1309.
  31. ^ Guan, Changhong; Zhu, Yong (2010-07-08). "An electrothermal microactuator with Z-shaped beams". Journal of Micromechanics and Microengineering. 20 (8): 085014. Bibcode:2010JMiMi..20h5014G. doi:10.1088/0960-1317/20/8/085014. ISSN 0960-1317.
  32. ^ Rawashdeh, Ehab; Karam, Ayman; Foulds, Ian G. (2012-07-06). "Characterization of Kink Actuators as Compared to Traditional Chevron Shaped Bent-Beam Electrothermal Actuators". Micromachines. 3 (3): 542–549. doi:10.3390/mi3030542. ISSN 2072-666X.
  33. ^ Shen, Xuejin; Chen, Xiangyu (2013-11-01). "Mechanical Performance of a Cascaded V-Shaped Electrothermal Actuator". International Journal of Advanced Robotic Systems. 10 (11): 379. doi:10.5772/56786. ISSN 1729-8814.
  34. ^ Que, L.; Park, J.-S.; Gianchandani, Y.B. (1999). "Bent-beam electro-thermal actuators for high force applications". Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfth IEEE International Conference on. pp. 31–36. doi:10.1109/MEMSYS.1999.746747. ISBN 978-0-7803-5194-3. S2CID 34117175.
  35. ^ Shivhare, Pankaj; Uma, G.; Umapathy, M. (2016-11-01). "Design enhancement of a chevron electrothermally actuated microgripper for improved gripping performance". Microsystem Technologies. 22 (11): 2623–2631. doi:10.1007/s00542-015-2561-0. ISSN 1432-1858.
  36. ^ Kang, Seok-Won; Fragala, Joe; Kim, Su-Ho; Banerjee, Debjyoti (2017-11-01). "Design and Electro-Thermo-Mechanical Behavior Analysis of Au/Si3N4 Bimorph Microcantilevers for Static Mode Sensing". Sensors. 17 (11): 2510. doi:10.3390/s17112510. ISSN 1424-8220. PMC 5713188. PMID 29104265.
  37. ^ Chu, Wen-Hwa; Mehregany, M; Mullen, R L (1993-03-01). "Analysis of tip deflection and force of a bimetallic cantilever microactuator". Journal of Micromechanics and Microengineering. 3 (1): 4–7. Bibcode:1993JMiMi...3....4C. doi:10.1088/0960-1317/3/1/002. ISSN 0960-1317.
  38. ^ Sehr, Harald; Evans, Alan G R; Brunnschweiler, Arthur; Ensell, Graham J; Niblock, Trevor E G (2001-07-01). "Fabrication and test of thermal vertical bimorph actuators for movement in the wafer plane". Journal of Micromechanics and Microengineering. 11 (4): 306–310. Bibcode:2001JMiMi..11..306S. doi:10.1088/0960-1317/11/4/303. ISSN 0960-1317.
  39. ^ Zhu, Shou-En; Shabani, Roxana; Rho, Jonghyun; Kim, Youngsoo; Hong, Byung Hee; Ahn, Jong-Hyun; Cho, Hyoung J. (2011-03-09). "Graphene-Based Bimorph Microactuators". Nano Letters. 11 (3): 977–981. Bibcode:2011NanoL..11..977Z. doi:10.1021/nl103618e. ISSN 1530-6984. PMID 21280657.
  40. ^ Bühler, J.; Funk, J.; Paul, O.; Steiner, F.-P.; Baltes, H. (1995-03-01). "Thermally actuated CMOS micromirrors". Sensors and Actuators A: Physical. 47 (1–3): 572–575. Bibcode:1995SeAcA..47..572B. doi:10.1016/0924-4247(94)00964-j. ISSN 0924-4247.
  41. ^ Zheng, Xiaohu; Kim, Ji-Kwan; Lee, Dong-Weon (2011-01-01). "Design and fabrication of a novel microgripper with four-point contact fingers". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 29 (1): 011007. Bibcode:2011JVSTA..29a1007Z. doi:10.1116/1.3520645. ISSN 0734-2101.
  42. ^ Jain, A.; Kopa, A.; Pan, Y.; Fedder, G.K.; Xie, H. (2004-08-16). "A Two-Axis Electrothermal Micromirror for Endoscopic Optical Coherence Tomography". IEEE Journal of Selected Topics in Quantum Electronics. 10 (3): 636–642. Bibcode:2004IJSTQ..10..636J. doi:10.1109/JSTQE.2004.829194. ISSN 1077-260X.
  43. ^ Singh, Janak; Gan, Terence; Agarwal, Ajay; Mohanraj; Liw, Saxon (2005-04-06). "3D free space thermally actuated micromirror device". Sensors and Actuators A: Physical. 123–124: 468–475. Bibcode:2005SeAcA.123..468S. doi:10.1016/j.sna.2005.02.037. ISSN 0924-4247.
  44. ^ Todd, Shane T; Jain, Ankur; Qu, Hongwei; Xie, Huikai (2006-06-01). "A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators". Journal of Optics A: Pure and Applied Optics. 8 (7): S352–S359. Bibcode:2006JOptA...8S.352T. doi:10.1088/1464-4258/8/7/s10. ISSN 1464-4258.
  45. ^ Pedrak, R.; Ivanov, Tzv.; Ivanova, K.; Gotszalk, T.; Abedinov, N.; Rangelow, I. W.; Edinger, K.; Tomerov, E.; Schenkel, T.; Hudek, P. (2003-11-01). "Micromachined atomic force microscopy sensor with integrated piezoresistive sensor and thermal bimorph actuator for high-speed tapping-mode atomic force microscopy phase-imaging in higher eigenmodes". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 21 (6): 3102–3107. Bibcode:2003JVSTB..21.3102P. doi:10.1116/1.1614252. ISSN 1071-1023.
  46. ^ Fu, JianYu; Chen, DaPeng; Ye, TianChun (2010-05-01). "Study on electrothermally actuated cantilever array for nanolithography". Science China Technological Sciences. 53 (5): 1184–1189. Bibcode:2010ScChE..53.1184F. doi:10.1007/s11431-010-0097-1. ISSN 1862-281X.
  47. ^ Chen, Wen-Chih; Chu, Chien-Cheng; Hsieh, Jerwei; Fang, Weileun (2003-01-01). "A reliable single-layer out-of-plane micromachined thermal actuator". Sensors and Actuators A: Physical. 103 (1–2): 48–58. Bibcode:2003SeAcA.103...48C. doi:10.1016/s0924-4247(02)00315-1. ISSN 0924-4247.
  48. ^ Lara-Castro, Miguel; Herrera-Amaya, Adrian; Escarola-Rosas, Marco A.; Vázquez-Toledo, Moisés; López-Huerta, Francisco; Aguilera-Cortés, Luz A.; Herrera-May, Agustín L. (2017-06-25). "Design and Modeling of Polysilicon Electrothermal Actuators for a MEMS Mirror with Low Power Consumption". Micromachines. 8 (7): 203. doi:10.3390/mi8070203. ISSN 2072-666X. PMC 6189825. PMID 30400394.
  49. ^ Yang, Sijie; Xu, Qingsong (2017-10-01). "A review on actuation and sensing techniques for MEMS-based microgrippers". Journal of Micro-Bio Robotics. 13 (1): 1–14. doi:10.1007/s12213-017-0098-2. ISSN 2194-6426.
  50. ^ Chronis, N.; Lee, L.P. (2005-08-08). "Electrothermally activated SU-8 microgripper for single cell manipulation in solution". Journal of Microelectromechanical Systems. 14 (4): 857–863. doi:10.1109/JMEMS.2005.845445. ISSN 1057-7157.
  51. ^ Greitmann, Georg; Buser, Rudolf A (1996-05-01). "Tactile microgripper for automated handling of microparts". Sensors and Actuators A: Physical. Proceedings of The 8th International Conference on Solid-State Sensors and Actuators. 53 (1): 410–415. Bibcode:1996SeAcA..53..410G. doi:10.1016/0924-4247(96)80164-6. ISSN 0924-4247.
  52. ^ Rahafrooz, Amir; Hajjam, Arash; Pourkamali, Siavash (2009-11-06). "Thermal actuation of high frequency micromechanical resonators". 2009 IEEE International SOI Conference. IEEE. pp. 1–2. doi:10.1109/soi.2009.5318786. ISBN 978-1-4244-4256-0.
  53. ^ Li, Xinxin; Lee, Dong-Weon (2012-02-01). "Integrated microcantilevers for high-resolution sensing and probing". Measurement Science and Technology. 23 (2): 022001. Bibcode:2012MeScT..23b2001L. doi:10.1088/0957-0233/23/2/022001. ISSN 0957-0233.

Further reading

edit
edit