Solar storms of different types are caused by disturbances on the Sun, most often from coronal mass ejections (CMEs) and solar flares from active regions, or, less often, from coronal holes. Minor to active solar storms (i.e. storming restricted to higher latitudes) may occur under elevated background solar wind conditions when the interplanetary magnetic field (IMF) orientation is southward, toward the Earth (which also leads to much stronger storming conditions from CME-related sources).[1][2][3][4][5]

A coronal mass ejection

Background edit

Active stars produce disturbances in space weather and, if strong enough, in their own space climate. Science studies such phenomena with the field of heliophysics, which is an interdisciplinary combination of solar physics and planetary science.

In the Solar System, the Sun can produce intense geomagnetic and energetic particle storms capable of causing severe damage to technology. It can result in large scale power outages, disruption or blackouts of radio communications (including GPS), damage or destruction of submarine communications cables,[6] and temporary to permanent disabling of satellites and other electronics. Intense solar storms may also be hazardous to high-latitude, high-altitude aviation[7] and to human spaceflight.[8] Geomagnetic storms are the cause of aurora.[9] The most significant known solar storm, across the most parameters, occurred in September 1859 and is known as the "Carrington event".[10] The damage from the most potent solar storms is capable of existentially threatening the stability of modern human civilization,[11][8] although proper preparedness and mitigation can substantially reduce the hazards.[12][13]

Proxy data from Earth, as well as analysis of stars similar to the Sun, suggest that the Sun may be also capable of producing so called superflares, which are as much as 1000x stronger than any flares in the historical record.[14][15][16] Other research, like models of solar flares[17] and statistics of extreme solar events reconstructed using cosmogenic isotope data in terrestrial archives, indicate otherwise.[18] The discrepancy is not yet resolved and may be related to a biased statistic of the stellar population of solar analogs.[19]

Coronal mass ejections and solar particle events edit

Events affecting Earth edit

Proxy evidence edit

This section contains a list of possible events that are indicated by indirect, or proxy data. The scientific value of such data remains unresolved.[20][21]

Direct measurements and/or visual observations edit

Date Event Significance
Mar 1582 Great magnetic storms of March 1582 Prolonged severe-extreme geomagnetic storm produced aurora to 28.8° magnetic latitude (MLAT) and ≈33.0° invariant latitude (ILAT).[38][39]
Feb 1730 At least as intense as the 1989 event but less intense than the Carrington event[40]
Sep 1770 [41][42][43]
Sep 1859 Carrington Event Also known as the Carrington Event, the most extreme storm ever documented by most measures; telegraph machines reportedly shocked operators and caused small fires; aurorae visible in tropical areas; first solidly established connection of flares to geomagnetic disturbances. Extreme storming directly preceded this event in late August.
Feb 1872 Chapman–Silverman storm minimal Dst* ≤ −834 nT[44][45]
Nov 1882 November 1882 geomagnetic storm [46]
Oct 1903 Solar storm of Oct-Nov 1903 An extreme storm, estimated at Dst -531 nT arose from a fast CME (mean ≈1500 km/s), occurred during the ascending phase of the minimum of the relatively weak solar cycle 14, which is the most significant storm on record in a solar minimum period. Aurora was conservatively observed to ≈44.1° ILAT, and widespread disruptions and overcharging of telegraph systems occurred.[47][48]
Sep 1909 Geomagnetic storm of September 1909 Dst calculated to have reached -595 nT, comparable to the March 1989 event[49]
May 1921 May 1921 geomagnetic storm Among most extreme known geomagnetic storms; farthest equatorward (lowest latitude) aurora ever documented;[50] burned out fuses, electrical apparatus, and telephone station; caused fires at signal tower and telegraph station; total communications blackouts lasting several hours.[51] A paper in 2019 estimates intensity of −907±132 nT.[52]
Jan 1938 January 1938 geomagnetic storm or the Fátima storm
Mar 1940 March 1940 superstorm Triggered by an X35±1 solar flare.[53] Caused significant interference to United States communication systems.[54]
Sep 1941 [55]
Mar 1946 Geomagnetic storm of March 1946 Est. Dstm of -512 nT[56][57]
Feb 1956 [58][59][60]
Sep 1957 Geomagnetic storm of September 1957 [61]
Feb 1958 Geomagnetic storm of February 1958 [61]
Jul 1959 Geomagnetic storm of July 1959 [61]
May 1967 Blackout of polar surveillance radars during Cold War led U.S. military to scramble for nuclear war until solar origin confirmed[62]
Oct 1968 [63][64]
Aug 1972 August 1972 solar storm Fastest CME transit time recorded; most extreme solar particle event (SPE) by some measures and the most hazardous to human spaceflight during the Space Age; severe technological disruptions, caused accidental detonation of numerous magnetic-influence sea mines[65]
Mar 1989 March 1989 geomagnetic storm Most extreme storm of the Space Age by several measures. Outed power grid of province of Quebec.[66] Caused interference to United States power grid.[67]
Aug 1989 [68]
Nov 1991 Geomagnetic storm of November 1991 An intense solar storm with about half the energy output of the March 1989 storm. Aurorae were visible in the US as far south as Texas[69][70]
Apr 2000 [71]
Jul 2000 Bastille Day solar storm
Apr 2001 A solar flare from a sunspot region associated with this activity and preceding this period produced the then largest flare detected during the Space Age at about X20 (the first event to saturate spaceborne monitoring instruments, this was exceeded in 2003) but was directed away from Earth.[71][72]
Nov 2001 Geomagnetic storm of November 2001 A fast-moving CME triggered vivid aurorae as far south as Texas, California, and Florida[73]
Oct 2003 2003 Halloween solar storms Among top few most intense storms of the Space Age; aurora visible as far south as Texas and the Mediterranean countries of Europe. A solar flare with x-ray flux estimated to be around X45 occurred from an associated active region on 4 November but was directed away from Earth.[74][75][76][77][78]
Nov 2003 Solar storms of November 2003 2021 study estimated Dstm of -533 nT[56][61]
Jan 2005 The most intense solar flare in 15 years with sunspot 720 erupting, 5 times from the 15th to 20th.[79][80]
Mar 2015 St. Patrick's Day storm Largest geomagnetic storm of solar cycle 24, driven by IMF variations[81][82][83][84]
Sep 2017 Triggered by an X8.2 class solar flare[85][86][87][88]
Feb 2022 SpaceX Starlink satellites failure A mild solar particle and geomagnetic storm[89] led to the failure and reentry of 40 SpaceX Starlink satellites that had been recently launched and were in low Earth orbit (LEO)[90]

Events not affecting Earth edit

The above events affected Earth (and its vicinity, known as the magnetosphere), whereas the following events were directed elsewhere in the Solar System and were detected by monitoring spacecraft or other means.

Date(s) Event Significance
23 July 2012 July 2012 solar storm Ultrafast CME directed away from Earth with characteristics that may have made it a Carrington-class storm[91][92][93][94][95]

Soft X-ray solar flares edit

Solar flares are intense localized eruptions of electromagnetic radiation in the Sun's atmosphere. They are often classified based on the peak flux of soft X-rays (SXR) measured by the GOES spacecraft in geosynchronous orbit (see Solar flare § Soft X-ray classification).

The following table lists the largest flares in this respect since June 1996, the beginning of solar cycle 23.[96][97]

No. SXR Class Date Solar cycle Active region Time (UTC) Notes
Start Max End
1 >X28 2003-11-04 23 10486 19:29 19:53 20:06 Associated with the 2003 Halloween solar storms
2 X20.0 2001-04-02 23 9393 21:32 21:51 22:03
3 X17.2 2003-10-28 23 10486 09:51 11:10 11:24 Associated with the 2003 Halloween solar storms
4 X17.0 2005-09-07 23 10808 17:17 17:40 18:03
5 X14.4 2001-04-15 23 9415 13:19 13:50 13:55
6 X10.0 2003-10-28 23 10486 20:37 20:49 21:01 Associated with the 2003 Halloween solar storms
7 X9.4 1997-11-06 23 8100 11:49 11:55 12:01
8 X9.3 2017-09-06 24 12673 11:53 12:02 12:10
9 X9.0 2006-12-05 23 10930 10:18 10:35 10:45
10 X8.3 2003-11-02 23 10486 17:03 17:25 17:39 Associated with the 2003 Halloween solar storms

See also edit

References edit

  1. ^ "The Interplanetary Magnetic Field (IMF)". SpaceWeatherLive.com. Parsec vzw. Retrieved 2021-03-20.
  2. ^ Adhikari, Binod; S. Dahal; N. P. Chapagain (2017). "Study of field‐aligned current (FAC), interplanetary electric field component (Ey), interplanetary magnetic field component (Bz), and northward (x) and eastward (y) components of geomagnetic field during supersubstorm". Earth and Space Science. 4 (5): 257–274. Bibcode:2017E&SS....4..257A. doi:10.1002/2017EA000258.
  3. ^ Gonzalez, W. D.; E. Echer (2005). "A study on the peak Dst and peak negative Bz relationship during intense geomagnetic storms". Geophysical Research Letters. 32 (18): L18103. Bibcode:2005GeoRL..3218103G. doi:10.1029/2005GL023486.
  4. ^ Loewe, C. A.; G. W. Prölss (1997). "Classification and mean behavior of magnetic storms". Journal of Geophysical Research: Space Physics. 102 (A7): 14209–14213. Bibcode:1997JGR...10214209L. doi:10.1029/96JA04020.
  5. ^ T. Y. Lui, Anthony; Consolini, Giuseppe; Kamide, Yosuke, eds. (2005). "What Determines the Intensity of Magnetospheric Substorms?". Multiscale Coupling of Sun-Earth Processes (1st ed.). Elsevier. pp. 175–194. doi:10.1016/B978-044451881-1/50014-9. ISBN 978-0444518811.
  6. ^ Spektor, Brandon (6 September 2021). "An 'Internet apocalypse' could ride to Earth with the next solar storm, new research warns". LiveScience.
  7. ^ RadsOnAPlane.com
  8. ^ a b Phillips, Tony (21 Jan 2009). "Severe Space Weather--Social and Economic Impacts". NASA Science News. National Aeronautics and Space Administration. Retrieved 2014-05-07.
  9. ^ "NOAA Space Weather Scales" (PDF). NOAA Space Weather Prediction Center. 1 Mar 2005. Retrieved 2017-09-13.
  10. ^ Bell, Trudy E.; T. Phillips (6 May 2008). "A Super Solar Flare". NASA Science News. National Aeronautics and Space Administration. Retrieved 2014-05-07.
  11. ^ Kappenman, John (2010). Geomagnetic Storms and Their Impacts on the U.S. Power Grid (PDF). META-R. Vol. 319. Goleta, CA: Metatech Corporation for Oak Ridge National Laboratory. OCLC 811858155. Archived from the original (PDF) on 2012-08-19.
  12. ^ National Space Weather Action Plan (PDF). Washington, DC. 28 Oct 2015 – via National Archives. {{cite book}}: |work= ignored (help)CS1 maint: location missing publisher (link)
  13. ^ Lingam, Manasvi; Abraham Loeb (2017). "Impact and mitigation strategy for future solar flares". arXiv:1709.05348 [astro-ph.EP].
  14. ^ Shibata, Kazunari (15 Apr 2015). "Superflares on Solar Type Stars and Their Implications on the Possibility of Superflares on the Sun" (PDF). 2015 Space Weather Workshop. Boulder, CO: Space Weather Prediction Center.
  15. ^ Karoff, Christoffer; et al. (2016). "Observational evidence for enhanced magnetic activity of superflare stars". Nat. Commun. 7 (11058): 11058. Bibcode:2016NatCo...711058K. doi:10.1038/ncomms11058. PMC 4820840. PMID 27009381.
  16. ^ Lingam, Manasvi; A. Loeb (2017). "Risks for Life on Habitable Planets from Superflares of Their Host Stars". Astrophysical Journal. 848 (1): 41. arXiv:1708.04241. Bibcode:2017ApJ...848...41L. doi:10.3847/1538-4357/aa8e96. S2CID 92990447.
  17. ^ Aulanier, G.; et al. (2013). "The standard flare model in three dimensions. II. Upper limit on solar flare energy". Astron. Astrophys. 549: A66. arXiv:1212.2086. Bibcode:2013A&A...549A..66A. doi:10.1051/0004-6361/201220406. S2CID 73639325.
  18. ^ Usoskin, Ilya (2017). "A history of solar activity over millennia". Living Rev. Sol. Phys. 14 (1): 3. arXiv:0810.3972. Bibcode:2017LRSP...14....3U. doi:10.1007/s41116-017-0006-9. S2CID 195340740.
  19. ^ Kitchatinov, Leonid; S. Olemskoy (2016). "Dynamo model for grand maxima of solar activity: can superflares occur on the Sun?". Mon. Not. R. Astron. Soc. 459 (4): 4353. arXiv:1602.08840. Bibcode:2016MNRAS.459.4353K. doi:10.1093/mnras/stw875.
  20. ^ Mekhaldi, F.; et al. (2017). "No Coincident Nitrate Enhancement Events in Polar Ice Cores Following the Largest Known Solar Storms". Journal of Geophysical Research: Atmospheres. 122 (21): 11, 900–11, 913. Bibcode:2017JGRD..12211900M. doi:10.1002/2017JD027325.
  21. ^ Usoskin, Ilya G.; Gennady A. Kovaltsov (2012). "Occurrence of Extreme Solar Particle Events: Assessment from Historical Proxy Data". The Astrophysical Journal. 757 (92): 92. arXiv:1207.5932. Bibcode:2012ApJ...757...92U. doi:10.1088/0004-637X/757/1/92.
  22. ^ Bard Edouard; Miramont Cécile; Capano Manuela; Guibal Frédéric; Marschal Christian; Rostek Frauke; Tuna Thibaut; Fagault Yoann; Heaton Timothy J. (2023). "A radiocarbon spike at 14 300 cal yr BP in subfossil trees provides the impulse response function of the global carbon cycle during the Late Glacial". Philosophical Transactions of the Royal Society A. 381 (2261). doi:10.1098/rsta.2022.0206. PMC 10586540. PMID 37807686. S2CID 263759832.
  23. ^ a b Paleari, Chiara I.; F. Mekhaldi; F. Adolphi; M. Christl; C. Vockenhuber; P. Gautschi; J. Beer; N. Brehm; T. Erhardt; H.-A. Synal; L. Wacker; F. Wilhelms; R. Muscheler (2022). "Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP". Nat. Commun. 13 (214): 214. Bibcode:2022NatCo..13..214P. doi:10.1038/s41467-021-27891-4. PMC 8752676. PMID 35017519.
  24. ^ F. Miyake; I. P. Panyushkina; A. J. T. Jull; F. Adolphi; N. Brehm; S. Helama; K. Kanzawa; T. Moriya; R. Muscheler; K. Nicolussi; M. Oinonen; M. Salzer; M. Takeyama; F. Tokanai; L. Wacker (16 June 2021). "A Single-Year Cosmic Ray Event at 5410 BCE Registered in 14C of Tree Rings". Geophysical Research Letters. 48 (11): e2021GL093419. Bibcode:2021GeoRL..4893419M. doi:10.1029/2021GL093419. PMC 8365682. PMID 34433990.
  25. ^ O'Callaghan, Jonathan (13 September 2021). "Solar 'Superflares' Rocked Earth Less Than 10,000 Years Ago—and Could Strike Again". Scientific American.
  26. ^ O'Hare, Paschal; et al. (2019). "Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. (~660 BC)". Proc. Natl. Acad. Sci. U.S.A. 116 (13): 5961–5966. Bibcode:2019PNAS..116.5961O. doi:10.1073/pnas.1815725116. PMC 6442557. PMID 30858311.
  27. ^ Hayakawa, Hisashi; Mitsuma, Yasuyuki; Ebihara, Yusuke; Miyake, Fusa (2019). "The Earliest Candidates of Auroral Observations in Assyrian Astrological Reports: Insights on Solar Activity around 660 BCE". The Astrophysical Journal Letters. 884 (1): L18. arXiv:1909.05498. Bibcode:2019ApJ...884L..18H. doi:10.3847/2041-8213/ab42e4. S2CID 202565732.
  28. ^ Miyake; et al. (2012). "A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan". Nature. 486 (7402): 240–2. Bibcode:2012Natur.486..240M. doi:10.1038/nature11123. PMID 22699615. S2CID 4368820.
  29. ^ Melott, Adrian L.; B. C. Thomas (2012). "Causes of an AD 774–775 14C increase". Nature. 491 (7426): E1–E2. arXiv:1212.0490. Bibcode:2012Natur.491E...1M. doi:10.1038/nature11695. PMID 23192153. S2CID 205231715.
  30. ^ Usoskin; et al. (2013). "The AD775 cosmic event revisited: the Sun is to blame". Astron. Astrophys. 552: L3. arXiv:1302.6897. Bibcode:2013A&A...552L...3U. doi:10.1051/0004-6361/201321080. S2CID 55137950.
  31. ^ a b Mekhaldi, Florian; et al. (2015). "Multiradionuclide evidence for the solar origin of the cosmic-ray events of ᴀᴅ 774/5 and 993/4". Nature Communications. 6: 8611. Bibcode:2015NatCo...6.8611M. doi:10.1038/ncomms9611. PMC 4639793. PMID 26497389.
  32. ^ Edward Cliver; Hisashi Hayakawa; Jeffrey J. Love; D. F. Neidig (29 October 2020). "On the Size of the Flare Associated with the Solar Proton Event in 774 AD". The Astrophysical Journal. 903 (1): 41. Bibcode:2020ApJ...903...41C. doi:10.3847/1538-4357/abad93. S2CID 228985775.
  33. ^ Reimer, Paula; et al. (August 2020). "The INTCAL20 Northern Hemisphere RADIOCARBON AGE CALIBRATION CURVE (0–55 CAL kBP)". Radiocarbon. 62 (4): 725–757. Bibcode:2020Radcb..62..725R. doi:10.1017/RDC.2020.41. hdl:11585/770531.
  34. ^ Fusa, Miyake; Kimiaki Masuda; Toshio Nakamura (2013). "Another rapid event in the carbon-14 content of tree rings". Nature Communications. 4 (1748): 1748. Bibcode:2013NatCo...4.1748M. doi:10.1038/ncomms2783. PMID 23612289.
  35. ^ Hayakawa, H.; et al. (2017). "Historical Auroras in the 990s: Evidence of Great Magnetic Storms". Solar Physics. 292 (1): 12. arXiv:1612.01106. Bibcode:2017SoPh..292...12H. doi:10.1007/s11207-016-1039-2. S2CID 119095730.
  36. ^ Kuitems, Margo; Wallace, Birgitta L.; Lindsay, Charles; Scifo, Andrea; Doeve, Petra; et al. (20 October 2021). "Evidence for European presence in the Americas in AD 1021". Nature. 601 (7893): 388–391. doi:10.1038/s41586-021-03972-8. PMC 8770119. PMID 34671168. S2CID 239051036.
  37. ^ a b Brehm, N.; et al. (2021). "Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings". Nature Geoscience. 14 (1): 10–15. Bibcode:2021NatGe..14...10B. doi:10.1038/s41561-020-00674-0. S2CID 230508539.
  38. ^ Hattori, Kentaro; Hayakawa, Hisashi; Ebihara, Yusuke (2019). "Occurrence of Great Magnetic Storms on 6-8 March 1582". Monthly Notices of the Royal Astronomical Society. 487 (3): 3550. arXiv:1905.08017. Bibcode:2019MNRAS.487.3550H. doi:10.1093/mnras/stz1401.
  39. ^ Víctor Manuel Sánchez Carrasco; José Manuel Vaquero (2020). "Portuguese eyewitness accounts of the great space weather event of 1582". Journal of Space Weather and Space Climate. 10: 4. arXiv:2103.10941. Bibcode:2020JSWSC..10....4S. doi:10.1051/swsc/2020005. S2CID 216325320.
  40. ^ Hisashi Hayakawa; Yusuke Ebiharaa; José M. Vaquero; Kentaro Hattori; Víctor M. S. Carrasco; María de la Cruz Gallego; Satoshi Hayakawa; Yoshikazu Watanabe; Kiyomi Iwahashi; Harufumi Tamazawa; Akito D. Kawamura; Hiroaki Isobe (2018). "A Great Space Weather Event in February 1730". Astronomy & Astrophysics. 616: A177. arXiv:1807.06496. Bibcode:2018A&A...616A.177H. doi:10.1051/0004-6361/201832735. S2CID 119201108.
  41. ^ Kataoka, Ryuho; K. Iwahashi (2017). "Inclined Zenith Aurora over Kyoto on 17 September 1770: Graphical Evidence of Extreme Magnetic Storm". Space Weather. 15 (10): 1314–1320. Bibcode:2017SpWea..15.1314K. doi:10.1002/2017SW001690.
  42. ^ Hayakawa, Hisashi; et al. (2017). "Long-lasting Extreme Magnetic Storm Activities in 1770 Found in Historical Documents". Astrophysical Journal Letters. 850 (2): L31. arXiv:1711.00690. Bibcode:2017ApJ...850L..31H. doi:10.3847/2041-8213/aa9661. S2CID 119098402.
  43. ^ Yusuke Ebihara; Hisashi Hayakawa; Kiyomi Iwahashi; Harufumi Tamazawa; Akito Davis Kawamura; Hiroaki Isobe (2017). "Possible Cause of Extremely Bright Aurora Witnessed in East Asia on 17 September 1770". Space Weather. 15 (10): 1373–1382. Bibcode:2017SpWea..15.1373E. doi:10.1002/2017SW001693. hdl:2433/237235.
  44. ^ Hayakawa, Hisashi; et al. (2018). "The Great Space Weather Event during 1872 February Recorded in East Asia". The Astrophysical Journal. 862 (1): 15. arXiv:1807.05186. Bibcode:2018ApJ...862...15H. doi:10.3847/1538-4357/aaca40.
  45. ^ Hayakawa, Hisashi; et al. (2023). "The Extreme Space Weather Event of 1872 February: Sunspots, Magnetic Disturbance, and Auroral Displays". The Astrophysical Journal. 959 (1): 23. doi:10.3847/1538-4357/acc6cc.
  46. ^ Love, Jeffrey J. (2018). "The Electric Storm of November 1882". Space Weather. 16 (1): 37–46. Bibcode:2018SpWea..16...37L. doi:10.1002/2017SW001795.
  47. ^ Hattori, Kentaro; H. Hayakawa; Y. Ebihara (2020). "The Extreme Space Weather Event in 1903 October/November: An Outburst from the Quiet Sun". Astrophys. J. 897 (1): L10. arXiv:2001.04575. Bibcode:2020ApJ...897L..10H. doi:10.3847/2041-8213/ab6a18. S2CID 210473520.
  48. ^ Phillips, Tony (July 29, 2020). "The Solar Minimum Superstorm of 1903". SpaceWeatherArchive. SpaceWeather.com. Retrieved 2020-09-16.
  49. ^ Love, Jeffrey J.; H. Hayakawa; E. W. Cliver (2019). "On the Intensity of the Magnetic Superstorm of September 1909". Space Weather. 17 (1): 37–45. Bibcode:2019SpWea..17...37L. doi:10.1029/2018SW002079.
  50. ^ Silverman, S.M.; E.W. Cliver (2001). "Low-latitude auroras: the magnetic storm of 14–15 May 1921". J. Atmos. Sol.-Terr. Phys. 63 (5): 523–535. Bibcode:2001JASTP..63..523S. doi:10.1016/S1364-6826(00)00174-7.
  51. ^ M. Hapgood (2019). "The great storm of May 1921: An exemplar of a dangerous space weather event". Space Weather. 17 (7): 950–975. Bibcode:2019SpWea..17..950H. doi:10.1029/2019SW002195.
  52. ^ Jeffrey J. Love; Hisashi Hayakawa; Edward W. Cliver (2019). "Intensity and Impact of the New York Railroad Superstorm of May 1921". Space Weather. 17 (8): 1281–1292. Bibcode:2019SpWea..17.1281L. doi:10.1029/2019SW002250.
  53. ^ Hisashi Hayakawa; Denny M Oliveira; Margaret A Shea; Don F Smart; Seán P Blake; Kentaro Hattori; Ankush T Bhaskar; Juan J Curto; Daniel R Franco; Yusuke Ebihara (13 December 2021). "The Extreme Solar and Geomagnetic Storms on 20-25 March 1940". Monthly Notices of the Royal Astronomical Society. doi:10.1093/mnras/stab3615. hdl:11603/24054.
  54. ^ Jeffrey J. Love; E. Joshua Rigler; Michael D. Hartinger; Greg M. Lucas; Anna Kelbert; Paul A. Bedrosian (2023). "The March 1940 Superstorm: Geoelectromagnetic Hazards and Impacts on American Communication and Power Systems". Space Weather. 21 (6). Bibcode:2023SpWea..2103379L. doi:10.1029/2022SW003379.
  55. ^ Love, Jeffrey J.; Coïsson, P. (15 Sep 2016). "The Geomagnetic Blitz of September 1941". Eos. 97. doi:10.1029/2016EO059319.
  56. ^ a b Love, Jeffrey J. (2021). "Extreme‐event magnetic storm probabilities derived from rank statistics of historical Dst intensities for solar cycles 14‐24". Space Weather. 19 (4). Bibcode:2021SpWea..1902579L. doi:10.1029/2020SW002579.
  57. ^ Hayakawa, Hisashi; Y. Ebihara; A. A. Pevtsov; A. Bhaskar; N. Karachik; D. M. Oliveira (2020). "Intensity and time series of extreme solar-terrestrial storm in 1946 March". Mon. Not. R. Astron. Soc. 197 (4): 5507–5517. doi:10.1093/mnras/staa1508.
  58. ^ Meyer, P.; Parker, E. N.; Simpson, J. A (1956). "Solar Cosmic Rays of February, 1956 and Their Propagation through Interplanetary Space". Phys. Rev. 104 (3): 768–83. Bibcode:1956PhRv..104..768M. doi:10.1103/PhysRev.104.768.
  59. ^ Belov, A.; E. Eroshenko; H. Mavromichalaki; C. Plainaki; V. Yanke (15 September 2005). "Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956" (PDF). Annales Geophysicae. 23 (6): 2281–2291. Bibcode:2005AnGeo..23.2281B. doi:10.5194/angeo-23-2281-2005.
  60. ^ Usoskin, Ilya G.; Koldobskiy, Sergey A.; Kovaltsov, Gennady A.; Rozanov, Eugene V.; Sukhodolov, Timophei V.; Mishev, Alexander L.; Mironova, Irina A. (2020). "Revisited reference solar proton event of 23‐Feb‐1956: Assessment of the cosmogenic‐isotope method sensitivity to extreme solar events". Journal of Geophysical Research: Space Physics. arXiv:2005.10597. doi:10.1029/2020JA027921.
  61. ^ a b c d Stanislawska, Iwona; T. L. Gulyaeva; O. Grynyshyna‐Poliuga; L. V. Pustovalova (2018). "Ionospheric Weather During Five Extreme Geomagnetic Superstorms Since IGY Deduced With the Instantaneous Global Maps GIM‐foF2". Space Weather. 16 (2): 2068–2078. Bibcode:2018SpWea..16.2068S. doi:10.1029/2018SW001945.
  62. ^ Knipp, Delores J.; A. C. Ramsay; E. D. Beard; A. L. Boright; W. B. Cade; I. M. Hewins; R. McFadden; W. F. Denig; L. M. Kilcommons; M. A. Shea; D. F. Smart (2016). "The May 1967 Great Storm and Radio Disruption Event: Extreme Space Weather and Extraordinary Responses". Space Weather. 14 (9): 614–633. Bibcode:2016SpWea..14..614K. doi:10.1002/2016SW001423.
  63. ^ R.G. Roble; P.B. Hays; A.F. Nagy (1970). "Photometric and interferometric observations of a mid-latitude stable auroral red arc". Planetary and Space Science. 18 (3): 431–439. Bibcode:1970P&SS...18..431R. doi:10.1016/0032-0633(70)90181-9. hdl:2027.42/32793.
  64. ^ Phillips, Tony (November 6, 2021). "Back in the days when auroras were black and white". SpaceWeather.com.
  65. ^ Knipp, Delores J.; B. J. Fraser; M. A. Shea; D. F. Smart (2018). "On the Little‐Known Consequences of the 4 August 1972 Ultra‐Fast Coronal Mass Ejecta: Facts, Commentary and Call to Action". Space Weather. 16 (11): 1635–1643. Bibcode:2018SpWea..16.1635K. doi:10.1029/2018SW002024.
  66. ^ L. Bolduc (2002). "GIC observations and studies in the Hydro-Quebec} power system". Journal of Atmospheric and Solar-Terrestrial Physics. 64 (16): 1793–1802. Bibcode:2002JASTP..64.1793B. doi:10.1016/S1364-6826(02)00128-1.
  67. ^ Jeffrey J. Love; Greg M. Lucas; E. Joshua Rigler; Benjamin S. Murphy; Anna Kelbert; Paul A. Bedrosian (2022). "Mapping a Magnetic Superstorm: March 1989 Geoelectric Hazards and Impacts on United States Power Systems". Space Weather. 20 (5). Bibcode:2022SpWea..2003030L. doi:10.1029/2021SW003030.
  68. ^ Deffree, Suzanne (16 Aug 2013). "Solar flare impacts microchips, August 16, 1989". EDN.
  69. ^ The polar onset and development of the November 8 and 9, 1991, global red aurora
  70. ^ Coleman, Brenda (9 Nov 1991). "Northern Lights Brighten U.S. Skies". AP News.
  71. ^ a b Katamzi-Joseph, Zama Thobeka; J. B. Habarulema; M. Hernández-Pajares (2017). "Midlatitude postsunset plasma bubbles observed over Europe during intense storms in April 2000 and 2001". Space Weather. 15 (9): 1177–90. Bibcode:2017SpWea..15.1177K. doi:10.1002/2017SW001674. hdl:2117/115052. S2CID 55605118.
  72. ^ "Biggest Solar X-Ray Flare on Record - X20". SOHO Solar and Heliospheric Observatory. NASA/ESA. 2001. Retrieved 2022-01-31.
  73. ^ =Nov. 5 - 6, 2001 Aurora Gallery
  74. ^ Thomson, Neil R.; C. J. Rodger; R. L. Dowden (2004). "Ionosphere gives size of greatest solar flare". Geophysical Research Letters. 31 (6): n/a. Bibcode:2004GeoRL..31.6803T. doi:10.1029/2003GL019345.
  75. ^ Thomson, Neil R.; C. J. Rodger; M. A. Clilverd (2005). "Large solar flares and their ionospheric D region enhancements". Journal of Geophysical Research: Space Physics. 110 (A6): A06306. Bibcode:2005JGRA..110.6306T. doi:10.1029/2005JA011008.
  76. ^ Brodrick, David; S. Tingay; M. Wieringa (2005). "X-ray magnitude of the 4 November 2003 solar flare inferred from the ionospheric attenuation of the galactic radio background". Journal of Geophysical Research: Space Physics. 110 (A9): A09S36. Bibcode:2005JGRA..110.9S36B. doi:10.1029/2004JA010960.
  77. ^ Weaver, Michael; W. Murtagh; et al. (2004). Halloween Space Weather Storms of 2003 (PDF). NOAA Technical Memorandum. Vol. OAR SEC-88. Boulder, CO: Space Environment Center. OCLC 68692085. Archived from the original (PDF) on 2011-07-28.
  78. ^ Balch, Christopher; et al. (2004). Service Assessment: Intense Space Weather Storms October 19 – November 07, 2003 (PDF). NOAA Technical Memorandum. Silver Spring, MD: Department of Commerce.
  79. ^ Mitthumsiri, W.; A. Seripienlert; U. Tortermpun; P.-S. Mangeard; A. Sáiz; D. Ruffolo; R. Macatanga (2017). "Modeling polar region atmospheric ionization induced by the giant solar storm on 20 January 2005". J. Geophys. Res. Space Phys. 122 (8): 7946. Bibcode:2017JGRA..122.7946M. doi:10.1002/2017JA024125. S2CID 134815719.
  80. ^ Bieber, J. W.; J. Clem; P. Evenson; R. Pyle; A. Sáiz; D. Ruffolo (2013). "Giant Ground Level Enhancement of Relativistic Solar Protons on 2005 January 20. I. Spaceship Earth Observations". Astrophysical Journal. 771 (92): 92. Bibcode:2013ApJ...771...92B. doi:10.1088/0004-637X/771/2/92.
  81. ^ Y. Kamide; K. Kusano (2015). "No Major Solar Flares but the Largest Geomagnetic Storm in the Present Solar Cycle". Space Weather. 13 (6): 365–367. Bibcode:2015SpWea..13..365K. doi:10.1002/2015SW001213.
  82. ^ Elvira Astafyeva; Irina Zakharenkova; Matthias Förster (2015). "Ionospheric response to the 2015 St. Patrick's Day storm: A global multi-instrumental overview". Journal of Geophysical Research: Space Physics. 120 (10): 9023–9037. Bibcode:2015JGRA..120.9023A. doi:10.1002/2015JA021629.
  83. ^ Ajeet K. Maurya; K. Venkatesham; Sushil Kumar; Rajesh Singh; Prabhakar Tiwari; Abhay K. Singh (2018). "Effects of St. Patrick's Day Geomagnetic Storm of March 2015 and of June 2015 on Low-Equatorial D Region Ionosphere". Journal of Geophysical Research: Space Physics. 123 (8): 6836–6850. Bibcode:2018JGRA..123.6836M. doi:10.1029/2018JA025536.
  84. ^ Sunil Kumar Chaurasiya; Kalpana Patel; Sanjay Kumar; Abhay Kumar Singh; et al. (2022). "Ionospheric response of St. Patrick's Day geomagnetic storm over Indian low latitude regions". Astrophysics and Space Science. 367 (103): 103. Bibcode:2022Ap&SS.367..103C. doi:10.1007/s10509-022-04137-3. S2CID 252696753.
  85. ^ Bei Zhu; Ying D. Liu; Ryun-Young Kwon; Meng Jin; L. C. Lee; Xiaojun Xu (2021). "Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 Ground-level Enhancement Event". The Astrophysical Journal. 921 (1): 26. Bibcode:2021ApJ...921...26Z. doi:10.3847/1538-4357/ac106b. S2CID 240068552.
  86. ^ Junwei Zhao; Wei Liu; Jean-Claude Vial (2021). "White-light Continuum Observation of the Off-limb Loops of the SOL2017-09-10 X8.2 Flare: Temporal and Spatial Variations". The Astrophysical Journal Letters. 921 (2): L26. arXiv:2110.14130. Bibcode:2021ApJ...921L..26Z. doi:10.3847/2041-8213/ac3339. S2CID 239998107.
  87. ^ Wang Li; Dongsheng Zhao; Changyong He; Craig M. Hancock; Yi Shen; Kefei Zhang (2022). "Spatial-Temporal Behaviors of Large-Scale Ionospheric Perturbations During Severe Geomagnetic Storms on September 7–8 2017 Using the GNSS, SWARM and TIE-GCM Techniques". Journal of Geophysical Research: Space Physics. 127 (3). Bibcode:2022JGRA..12729830L. doi:10.1029/2021JA029830. S2CID 247378044.
  88. ^ Jianfeng Li; Yongqian Wang; Shiqi Yang; Fang Wang (2022). "Characteristics of Low-Latitude Ionosphere Activity and Deterioration of TEC Model during the 7–9 September 2017 Magnetic Storm". Atmosphere. 13 (9): 1365. Bibcode:2022Atmos..13.1365L. doi:10.3390/atmos13091365.
  89. ^ Phillips, Tony (9 February 2022). "The Starlink Incident". SpaceWeather.com. Retrieved 2022-02-09.
  90. ^ Wattles, Jackie (9 February 2022). "SpaceX will lose up to 40 satellites it just launched due to a solar storm". CNN.
  91. ^ Baker, D. N.; X. Li; A. Pulkkinen; C. M. Ngwira; M. L. Mays; A. B. Galvin; K. D. C. Simunac (2013). "A major solar eruptive event in July 2012: Defining extreme space weather scenarios". Space Weather. 11 (10): 585–91. Bibcode:2013SpWea..11..585B. doi:10.1002/swe.20097. S2CID 55599024.
  92. ^ Ngwira, Chigomezyo M.; A. Pulkkinen; M. Leila Mays; M. M. Kuznetsova; A. B. Galvin; K. Simunac; D. N. Baker; X. Li; Y. Zheng; A. Glocer (2013). "Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed?". Space Weather. 11 (12): 671–9. Bibcode:2013SpWea..11..671N. doi:10.1002/2013SW000990. hdl:2060/20150010106. S2CID 4708607.
  93. ^ Ying D. Liu; J. G. Luhmann; P. Kajdič; E. K.J. Kilpua; N. Lugaz; N. V. Nitta; C. Möstl; B. Lavraud; S. D. Bale; C. J. Farrugia; A. B. Galvin (2014). "Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections". Nature Communications. 5 (3481): 3481. arXiv:1405.6088. Bibcode:2014NatCo...5.3481L. doi:10.1038/ncomms4481. PMID 24642508. S2CID 11999567.
  94. ^ Phillips, Tony (2 May 2014). "Carrington-class CME Narrowly Misses Earth". NASA Science News. National Aeronautics and Space Administration. Retrieved 2014-05-07.
  95. ^ Phillips, Dr. Tony (23 July 2014). "Near Miss: The Solar Superstorm of July 2012". NASA. Retrieved 26 July 2014.
  96. ^ "Top 50 solar flares". SpaceWeatherLive.com. Retrieved 23 May 2022.
  97. ^ "The Most Powerful Solar Flares ever Recorded". www.spaceweather.com. Retrieved 23 May 2022.

Further reading edit

External links edit